期刊文献+

基于渐近法的废气氧传感器Hammerstein模型辨识 被引量:3

Hammerstein model identification of exhaust gas oxygen sensor based on ASYM method
下载PDF
导出
摘要 为了解决与发动机空燃比控制相关的废气氧(EG0)传感器精确建模问题,基于渐近(ASYM)法辨识了EGO传感器的Hammerstein模型。模型的非线性部分用静态实验数据拟合,动态线性部分的辨识分为三步。先估计一个高阶ARX模型,然后依据渐近准则(ASYC)找出最佳频率响应估计的模型阶次,再采用极大似然(ML)法估计降阶后的模型参数。通过残差分析、交叉验证和模型误差模型(MEM)测试,将得到的ASYM模型与输出误差(OE)模型和Box-Jenkins(BJ)模型进行比较。结果表明,基于ASYM法的Hammerstein模型能够更精确地捕获EGO传感器的频域动态特性,并且用ASYM法能够量化模型的频域误差上限以评价建模精度。 In order to solve the precise modeling problem of exhaust gas oxygen (EGO) sensor relating to engine air fuel ratio control, the Hammerstein model of EGO sensor is identified based on asymptotic (ASYM) method. The nonlinear part of the model is fitted using static experimental data. The identification of the dynamic linear part is divided into three steps. Firstly, a high order ARX model is estimated. Then, the model order for best frequency response estimation is obtained using the asymptotic criterion (ASYC). Next, the parameters of the order-reduced model are estimated based on the maximum likelihood (ML) method. The ASYM model is compared with the output error (OE) model and Box-Jenkins (B J) model through residual analysis, cross validation and model error model (MEM) test. Results show that the dynamical characteristics of the EGO sensor in frequency domain can be more accurately captured by the Hammerstein model based on ASYM method ; and the upper error bound of the model in frequency domain can be quantified using ASYM method for modehng accuracy evaluation.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2010年第7期1514-1519,共6页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(60474057) 合肥工业大学博士学位专项基金(GDBJ2008013)资助项目
关键词 废气氧传感器 HAMMERSTEIN模型 渐近方法 误差上限 模型误差模型 exhaust gas oxygen sensor Hammerstein model asymptotic method upper error bound model error model
  • 相关文献

参考文献15

二级参考文献31

  • 1李长武,梁国伟.汽车用热线式空气流量传感器[J].传感器技术,2004,23(8):38-40. 被引量:16
  • 2黄正良,万百五,韩崇昭.辨识Hammerstein模型的两步法[J].控制理论与应用,1995,12(1):34-39. 被引量:26
  • 3吴克刚.热膜式空气质量流量传感器的动态响应[J].长安大学学报(自然科学版),2005,25(5):99-102. 被引量:12
  • 4徐科军,张颖,张崇巍.基于沃尔什函数的传感器动态建模方法[J].电子测量与仪器学报,1996,10(2):24-29. 被引量:7
  • 5BUEHLER P J, FRANCHEK M A, MAKKI I. Mass air flow sensor diagnostics for adaptive fueling control of internal combustion engines[ C]. American Control Conference, 2002,3:2064-2069.
  • 6MRAD R B, LEVITT J A. Nonlinear process representa tion using ARMAX models with time dependent coeffi cients[C]. The 37th IEEE Decision and Control Confer ence, 1998,1:495-500.
  • 7BAI ER W, FU M Y. A blind approach to Hammerstein model identification[ C ]. The 40th IEEE Conference on Decision and Control, 2001,5:4794 - 4799.
  • 8RALSTON J C, ZOUBIR A M. Identification of time-varying Hammerstein systems [ C]. International Conference on Acoustics, Speech, and Signal Processing, 1995,3 : 1685-1688.
  • 9BAI ER W. Two-stage identification algorithm for Hammerstein-Wiener nonlinear systems [J]. Automatica, 1998,34( 3 ) :333-338.
  • 10Kainz J L, Smith J C. Individual cylinder fuel control with a switching oxygen sensor [ J ]. SAE Transactions, Section 3, Journal of Engines,1999 (108) : 775 -782.

共引文献7

同被引文献34

  • 1王春民,崔兴华.预测误差法参数辨识及其MATLAB仿真[J].系统仿真学报,2005,17(z2):145-147. 被引量:4
  • 2FengDING TongwenCHEN.Modeling and Identification of Multirate Systems[J].自动化学报,2005,31(1):105-122. 被引量:35
  • 3桑海峰,王福利,何大阔,张大鹏.基于最小二乘支持向量机的发酵过程混合建模[J].仪器仪表学报,2006,27(6):629-633. 被引量:15
  • 4韩桂华,邵俊鹏,董玉红,李建英.基于xPC技术的液压伺服系统模型辨识研究[J].液压与气动,2007,31(7):16-20. 被引量:4
  • 5WU D H,HUANG S L,ZHAO W,et al.Infrared ther-mometer sensor dynamic error compensation using Ham-merstein neural network. Sensors and Actuators . 2009
  • 6YU D H,LIU F,LAI P Y.Nonlinear dynamic compen-sation of sensors using inverse-model-based neural net-work. IEEE Transactions on Instrumentation and Measurement . 2008
  • 7XU K J,WANG X F.Identification of sensor block mod-el using volterra series and frequency response function. Measurement . 2008
  • 8JERAJ J,JOHN MATHEWS V.Stochastic mean-squareperformance analysis of an adaptive hammerstein filter. IEEE Trans.Sign.proc . 2006
  • 9JERAJ J,MATHEWS V J.A stable adaptive hammer-stein filter employing partial orthogonalization of the inputsignals. IEEE Trans.Sign.Proc . 2006
  • 10Wang J S,Chen Y P.Ahammerstein recurrent neurofuzzy network with an online minimal realization learning algorithm. IEEE Trans Fuz Sys . 2008

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部