期刊文献+

基于人工免疫的彩色图像颜色约减算法 被引量:1

Color reduction algorithm of color image based on artificial immune
下载PDF
导出
摘要 针对真彩色图像中颜色种类多、信息冗余量大的问题,通过分析生物免疫与自学习分类的相似性,提出一种基于人工免疫的彩色图像颜色约减算法。通过人工免疫的自学习颜色分类约减,将原彩色图像的颜色约减到较少的数目,便于后续的目标定位、图像分割和识别。实验结果表明,本方法具有良好的颜色约减性能,且与传统的颜色量化方法相比,本方法具有较低的量化误差。 A self-learning color reduction algorithm of color image is proposed for the large amount of color and redundant information in true color image through similarity analysis of biological immunity and self-learning classification. Through self-learning color reduction, the color of original image can be reduced for the applications, such as object localization, image segmentation and recognition. Experiment results demonstrate that the proposed algorithm has good performance on color reduction and low quantization error compared with traditional color quantization algo-rithm.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2010年第7期1558-1563,共6页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(60775059)资助项目
关键词 颜色约减 人工免疫 颜色量化 color reduction artificial immune color quantization
  • 相关文献

参考文献16

  • 1DEKKER A H.Kohonen neural networks for optimal color quantization[J].Network:Computation in Neural System,1994,5:351-367.
  • 2OMRAN M,ENGELBRECHT A.A color image quantization algorithm based on particle swarm optimization[J].Information,2005,29:261-269.
  • 3ZHOU B,SHEN J Y,PENG Q K.An adjustable algorithm for color quantization[J].Pattern Recognition Letters,2004,25:1787-1797.
  • 4HECKBERT P.Color image quantization for frame buffer display[J].Computer Graphics,1982,16(3):297-307.
  • 5WAN S J,PRUSINKIEWICZ P,WONG S K M.Variance based color image quantization for frame buffer display[J].Color Research Application,1990,15(1):52-58.
  • 6LIM Y W,LEE S U.On the color image segmentation algorithm based on the thresholding and the fuzzy C-means techniques[J].Pattern Recognition,1990,23(9):935-952.
  • 7VEREVKA O,JOHN W B.Local K-means algorithm for color image quantization[C].Proceeding of Graphics Interface Conference,1995:128-135.
  • 8REDDI S S,RUDIN S F,KESHAVAN H R.An optimal multiple threshold scheme for image segmentation[J].IEEE Transactions on SMC,1984,14(4):661-665.
  • 9SAHOO P K,SOLTANI S,WONG A K C,et al.Survey of thresholding techniques[J].Computer Vision,Graphics and Image Processing,1988,41:233-260.
  • 10TSAI D M.A fast thresholding selection procedure for multimodal and unimodal histograms[J].Pattern Recognition Letters,1995,16(6):653-666.

二级参考文献43

共引文献43

同被引文献18

  • 1华顺刚,王雪飞.基于等距离匹配的全景图像快速生成算法[J].仪器仪表学报,2006,27(z1):756-757. 被引量:1
  • 2VINCENT L,SOILLE P.Watershed in digital spaces:An efficient algorithm based on immersion simulation[J].IEEE Trans.PAMI,1991,13(6):538-598.
  • 3BLEAU A,LEON L J.Watershed-based segmentationand region merging[J].Computer Vision and Image Un-derstanding,2000,77(3):317-370.
  • 4BEZDEK J C.Pattern recognition with fuzzy objectivefunction algorithms[M].New York:PlenumPress,1981.
  • 5MIYAHARA M.Mathematical transform of(R,G,B)color data to munsell(H,V,C)color data[J].SPIEVisual Communications and Image Processing,1988,1001:650-657.
  • 6SAWHNEY H.Query by image and video content:TheQBIC system[J].IEEE Computer,1995,28(9):23-32.
  • 7GONG Y G,PROIETTI G,FALOUTSOS C.Image inde-xing and retrieval based on human perceptual color clus-tering[C].The International Conference on ComputerVision and Pattern Recognition,San Diego,1998:578-583.
  • 8FENG C,KUO J,SHIN C Y,et al.Color and patternanalysis of printed fabric by an unsupervised clusteringmethod[J].Textile Research Journal,2005,75(1):9-12.
  • 9XING H J,HU B G.An adaptive fuzzy c-means cluste-ring-based mixtures of experts model for unlabeled dataclassification[J].Neurocomputing,2008,71(3):1008-1021.
  • 10杨福刚,孙同景,宋松林.基于人工免疫算法的药液颗粒异物检测方法[J].电子测量与仪器学报,2008,22(1):20-24. 被引量:10

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部