期刊文献+

熔融碳酸盐燃料电池热力特性研究与实验分析 被引量:4

Study on Thermodynamic Characteristics and Experimental Analysis of Molten Carbonate Fuel Cells
下载PDF
导出
摘要 基于质量、能量和动量守恒原理和热力学特性,建立了一维熔融碳酸盐燃料电池的数学模型,应用容阻特性将复杂的偏微分方程转换为适用于快速仿真的差分方程组求解,并对燃料电池进行了实验分析.该数学模型考虑了电化学反应,反映了燃料电池的分布参数特性.利用该模型分析某一工况下熔融碳酸盐燃料电池的性能,通过与实验数据的对比表明,容阻特性的建模方法在燃料电池系统中是可行的,该模型可以反映熔融碳酸盐燃料电池的特性. This work presented a one-dimensional mathematical model for molten carbonate fuel cell(MCFC) based on mass,energy and momentum conservation principles and thermodynamic properties.(Using) the V-R modeling technique the partial differential equations can be changed to ordinary differential(equations) which meet the quick simulation.The electrochemical reactions are considered in the model,and the characteristics of distributed parameters are shown.Some experiments were carried out,and the performance of the MCFC at a certain condition was analyzed using the model.A good agreement between the simulation and experimental results is presented,which shows the feasibility of using the volume-resistance characteristic model to reflect the molten carbonate fuel cell characteristics.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2010年第7期994-999,共6页 Journal of Shanghai Jiaotong University
基金 国家重点基础研究发展规划(973)项目(2010CB227301)
关键词 熔融碳酸盐燃料电池 容阻特性建模 分布集总参数方法 实验分析 molten carbonate fuel cell volume-resistance characteristic modeling distributed and lumped parameter method experimental analysis
  • 相关文献

参考文献14

  • 1He W, Chen Q. Three-dimensional simulations of a molten carbonate fuel cell stack under transient conditions[J].Journal of Power Sources, 1998, 73: 182- 192.
  • 2Hao H L, Zhang H S, Weng S L,etal. Dynamic numerical simulation of a molten carbonate fuel cell[J].Journal of Power Sources, 2006, 161 : 849-855.
  • 3Koh J H, Kang B S, Lim H C. Effect of various stack parameters on temperature rise in molten carbonate fuel cell stack operation[J]. Journal of Power Sources, 2000, 91 : 161-171.
  • 4Koh J H, Seo H K, Yoo Y S, et al. Consideration of numerical simulation parameters and heat transfer models for a molten carbonate fuel cell stack [J]. Chemical Engineering Journal. 2002, 87: 367-379.
  • 5陈启梅,翁一武,顾伟,翁史烈.基于加权残值法的高温燃料电池温度分布特性的数值分析[J].动力工程,2005,25(4):603-608. 被引量:5
  • 6Baranak M, Atakul H. A basic model for analysis of molten carbonate fuel cell behavior[J]. Journal of Power Sources, 2007,172 : 831-839.
  • 7Aguiar P,Adjiman C S, Brandon N P. Anode-supported intermediate temperature direct internal reforming solid oxide fuel cell I: Model-based steady state performance[J]. Journal of Power Sources, 2004, 138(1/2) :120-136.
  • 8Iora P, Aguiar P, Adjiman C S, et al. Comparison of two IT DIR-SOFC models: Impact of variable thermodynamic, physical, and flow properties, steady- state and dynamic analysis[J]. Chemical Engineering Science,2005,60(11):2963-2975.
  • 9Brouwer J, Jabbari F, Leal E M, et al. Analysis of a molten carbonate fuel cell: Numerical modeling and experimental validation[J]. Journal of Power Sources,2006, 158: 213-224.
  • 10Lukas M D, Lee K Y, Hossein G A. Development of a stack simulation model for control study on direct reforming molten carbonate fuel cell power plant[J]. IEEE Trans on Energy Conv, 1999, 14 (4): 1651- 1657.

二级参考文献4

  • 1Michael D L, Kwang Y L. An explicit dynamic model for direct reforming carbonate fuel cell stack [ J ]. IEEE Transaction on Energy Conversion, 2001,16 ( 3 ): 289 ~295.
  • 2Yoshiba F, Izaki Y, Watanabe T, et al. Analyses of MCFC stack performances using three dimensional numerical models - comparison of stack performances about various gas flow type and analyses of heat loss effects on a stack performance [R]. Japan: CRIEPI Report,1997,1 ~21.
  • 3杨华,肖云汉,蔡睿贤,俞颐秦.熔融碳酸盐燃料电池单体传热传质数值模拟[J].中国电机工程学报,2001,21(7):22-25. 被引量:22
  • 4翁史烈,翁一武,苏明.熔融碳酸盐燃料电池动态特性的研究[J].中国电机工程学报,2003,23(7):168-172. 被引量:43

共引文献4

同被引文献40

  • 1陈启梅,翁一武,翁史烈,朱新坚.高温燃料电池与燃气轮机相结合的混合发电系统[J].热能动力工程,2005,20(2):111-115. 被引量:13
  • 2陈启梅,翁一武,朱新坚,翁史烈.熔融碳酸盐燃料电池-燃气轮机混合动力系统特性分析[J].中国电机工程学报,2007,27(8):94-98. 被引量:13
  • 3Santangelo E, Tartarini P. Fuel cell system and tra- ditional technologies. Part I: Experimental CHP approach[J]. Applied Thermal Engineering, 2007, 27(89) .. 1278-1284.
  • 4Kang B, Koh J H, Lim H C. Effects of system con- figuration and operating condition on MCFC system efficiency[J]. Journal of Power Sources, 2002, 108(1- 2) .. 232-238.
  • 5Park S K, Kim T S. Comparison between pressurized design and ambient pressure design of hybrid solid oxide fuel cell - gas turbine systems[J]. Journal of Power Sources, 2006, 163(1).. 490-499.
  • 6Zhang H S, Weng S L, Su M. Evaluation of topping and bottoming cycle hybrid power plants with mcfc- micro turbine[C]///Proceedings of ASME Turbo Expo 2004. Vienna, Australia: ASME, 2004: GT53397, 1-6.
  • 7Standaert F, Hemmes K, Woudstra N. Nerst loss and multistage oxidation in fuel cells[C]//Proceedings of the Fuel cell seminar. California, USA: [s. n. ], 1998: 92-95.
  • 8Williams M C. Fuel cell handbook[M]. 5th ed. New York.. EGG Services Parspns Inc, 2000.
  • 9Au S T, Woudstra N, Hemmes K. Study of multi- stage oxidation by flowsheet calculations on a com- bined heat and power molten carbonate fuel cell plant [J]. Journal of Power Sources, 2003, 122 ( 1 ) : 28-36.
  • 10Vivanpatarakij S, Assabumrungrat S, Laosiripojana N. Improvement of solid oxide fuel cell performanceby using nonuniform potential operation[J]. Journal of Power Sources, 2007, 167(1) : 139 144.

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部