期刊文献+

基于多模型粒子滤波的机动多目标跟踪算法 被引量:6

Maneuvering Multiple Target Tracking Algorithm Based on Multiple Model Particle Filter
下载PDF
导出
摘要 针对密集杂波环境下机动多目标跟踪中系统强非线性以及运动模式切换对于滤波精度的不利影响,提出了一种基于多模型粒子滤波的机动多目标跟踪算法。新算法实现了多模型粒子滤波和广义概率数据关联算法的有机结合。通过在粒子状态采样过程中引入模型信息改善了交互式多模型和粒子滤波结合中导致的计算量膨胀问题,并利用广义概率数据关联算法实现回波的有效确认和回波信息的充分利用。给出了应用该方法的具体步骤,最后,理论分析和仿真实验证明该算法的有效性。 To eliminate the adverse impact on filter precision which was brought about by the maneuvering multi-target tracking system’s strong nonlinear and motion model switching in clutters environment,a novel maneuvering multi-target tracking algorithm based on multiple model particle filter was presented. The dynamic combination of multiple model particle filter and generalized probabilistic data association method was realized in the new algorithm. The rapid expansion of computational complexity,caused by the simple combination of the interacting multiple model and particle filter,was solved by introducing model information into the sampling process of particle state. And the effective validation and utilization of echo was accomplished by generalized probabilistic data association algorithm. The concrete steps of algorithm were given,and the theory analysis and simulation results showed its validity.
出处 《四川大学学报(工程科学版)》 EI CAS CSCD 北大核心 2010年第4期136-141,共6页 Journal of Sichuan University (Engineering Science Edition)
基金 国家自然科学基金重点项目(60634030) 国家自然科学基金资助项目(60702066 60972119)
关键词 机动多目标跟踪 多模型粒子滤波 交互式多模型 广义概率数据关联 maneuvering multiple target tracking multiple model particle filter interacting multiple model generalized probabilistic data association
  • 相关文献

参考文献12

  • 1Arulampalam M S, Maskell S, Gordon N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking [ J ]. IEEE Transactions on Signal Processing , 2002,50(2) : 174 - 188.
  • 2Cappe O, Godsill S J, Moulines E. An overview of existing methods and recent advances in sequential Monte Carlo [J]. Proceedings of the IEEE, 2007, 95 (5) : 899 - 924.
  • 3Musieki D, Suvorova S. Tracking in clutter using IMM-IPDA-based algorithms [ J ]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44( 1 ) : I11 - 126.
  • 4Mallick M, La Scala B F. IMM estimator for ground target tracking with variable measurement sampling intervals [ C ]// 9^th International Conference on Information fusion. 2006:1 -8.
  • 5Driessen H, Boers Y. E F ficient particle filter for jump Markovnonlinear systems[ J ]. IEE Proceedings Radar Sonar Navigation,2005,152 ( 5 ) : 323 - 326.
  • 6Mcginnity S, Irwin G W. Multiple model bootstrap filter for maneuvering target tracking [ J ]. IEEE Transactions on Aerospace and Electronic Systems ,2000,36(3 ) : 1006 - 1012.
  • 7Kirubarajan T, Bar Shalom Y. Probabilistic data association techniques for target tracking in clutter [ J ]. Proceedings of the IEEE ,2004, 92 (3) :536 - 557.
  • 8刘慧霞,梁彦,潘泉,程咏梅.天波超视距雷达多路径Viterbi数据关联跟踪算法[J].电子学报,2006,34(9):1640-1644. 被引量:22
  • 9Kennedy H L. Comparison of MHT and PDA track initiation performance [ C ]//International Conference on Radar. 2008 508 - 512.
  • 10Songhwai Oh, Russell S, Sastry S. Markov Chain Monte Carlo data association for multi-target tracking [ J ]. IEEE Transactions on Automatic Control, 2009,54 ( 3 ) : 481 - 497.

二级参考文献13

  • 1J Garcia,J A Besada,J M Molina,J I Portillo,G D Miguel.Fuzzy Data Association for Image-Based Tracking in Dense Scenarios[DB/OL].IEEE (c) 2002:902-907.http://www.ieee.org/ieeexplore.
  • 2张进平.[D].西安:西北工业大学,1994.
  • 3Q Pan,J P Zhang,H C Zhang.General probability data association with application to maneuvering multi-target tracking[A].Proceedings of the Asian Control Conference Tokyo[C].Tokyo:1994,27-30:455-458.
  • 4Y Bar-Shalom,T E Fortmann.Tracking and Data Association[M].Orlando,FL:Academic Press,1988.
  • 5D Musicki,B Evans.Joint integrated probabilistic data association-JIPDA*[DB/OL].ISIF,2002:1120-1125.http://www.ieee.org/ieeexplore.
  • 6T Kirubarajan,Y Bar-Shalom,K R Pattipati.Multiassignment for tracking a large number of overlapping objects[J].IEEE Trans on AES,2001,37(1):2-19.
  • 7L M Meng,W G Grimm,J Donne.Radar Detection Improvement by Integration of Multi-Object Tracking[DB/OL].ISIF,2002:1249-1255.http://www.ieee.org/ieeexplore.
  • 8H A P Blom,E A Bloem.Probabilistic data association avoiding track coalescence [J].IEEE Trans on AC,2000,45(2):247-259.
  • 9G W Pulford,R J Evans.A multipath data association tracer for over-the-horizon radar[J].IEEE Transactions on AES,1998,34(4):1165-1182.
  • 10Pulford G W,La Scala B F.Over-The-Horizon RadarTracking Using The Viterbi Algorithm-Second Report to High Frequency Radar Division CSSIP Report No.16/95[DB/OL],http://www.ee.mu.oz.au/research/cssip/publications/9798/vda-rep2.pdf,2004-3-20.

共引文献48

同被引文献58

引证文献6

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部