期刊文献+

基于UT变换与卡尔曼滤波的目标跟踪研究 被引量:8

Study of target tracking based on improved unscented transform Kalman filtering
下载PDF
导出
摘要 为了提高滤波速度和精度,将Unscented变换与卡尔曼滤波相结合,建立了Unscented卡尔曼滤波(UKF)数学模型。Un-scented变换基于高斯分布理论,通过Sigma点能够获取精确到三阶矩的均值和协方差,提高了滤波精度。计算仅涉及标准的向量和矩阵操作,不需要计算非线性函数的Jacobian或者Hessians矩阵,提高了滤波速度。通过设计的运动实验进行仿真对比,实验结果表明,对于非线性目标跟踪系统,UKF算法具有更高的滤波精度和稳定性。 To aim at raising the speed and precision,Unscented transform is drawn into Kalman filtering,and the model of UKF is published. Because Unscented transform is based on the theory of Gaussian distribution,so the typical value and covariance has third-order precise through Sigma spots in this method,the precision of filtering is raised. It only involves the operations of standard vector and matrix,has no use for the calculation of non-liner matrix of Jacobian and Hessians,so the speed of filtering is increased. Through movement emulation,it shows that for nonlinearity target tracking system,UKF gives better accuracy and stability.
作者 刘毅 李鑫
出处 《计算机工程与设计》 CSCD 北大核心 2010年第14期3331-3335,共5页 Computer Engineering and Design
关键词 目标跟踪 卡尔曼滤波 高斯分布 滤波精度 雅克比矩阵 target tracking Kalman filtering Gaussian distribution filtering precision Jacobian
  • 相关文献

参考文献6

  • 1Kotecha Jayesh H,Djuric Petar M.Gaussian particle filtering[J].IEEE Trans on Signal Processing,2003,51(10):2592-2601.
  • 2王敏,张冰.基于一种改进粒子滤波算法的目标跟踪研究[J].江苏科技大学学报(自然科学版),2008,22(1):63-67. 被引量:9
  • 3Li X R,Jilkov V P.Survey of maneuvering target tracking Part Ⅰ:Dynamic models[J].IEEE Trans on Aerospace and Electronic Systems,2003,39(4):1333-1364.
  • 4Arulampalam M S,Maskell S,Gordon N,et al.A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J].IEEE Trans on Signal Processing,2002,50(2):174-188.
  • 5Pitt M K,Shcphard N.Filtering via simulation:Auxiliary particle filters[J].Journal of the American Statistical Association,2004,94(2):590-599.
  • 6Julier S J,Uhlmann J K.Unscented filtering and nonlinear estimation[J].IEEE Trans on Automatic Control,2004,92(3):401-422.

二级参考文献9

  • 1[1]JULIER S J,UHLMANN J K.Unscented filtering and nonlinear estimation[J].Proceedings of the IEEE,2004,92(3):401-422.
  • 2[2]JULIER S J,UHLMANN J K,DURRANT-Whyten H F.A New Approach for filtering nolinear system[C]//Proc of the American Control Conf Washington:Seattle,1995:1628-1632.
  • 3[3]CARPENTER J,CLIFFORD,FEARNHEAD P.Improved particle filter for nonlinear problems[J].IEEE Proc Radar,Sonar,Naving,1999,2(1):216-228.
  • 4[4]DOUCET A,GORDON N,KRISHNAMURTHY V.Particle filters for state estimation of jump markov linear systems[J].IEEE Transactions on Signal Processing,2001,49(3):613-624.
  • 5[5]ARULAMPALAM M S,MASKELL S,GORDON N.A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J].IEEE Transactions on Signal Processing,2002,50(2):174-188.
  • 6[6]KOTECHA J H,DJURIC P M.Gaussian particle filtering[J].IEEE Transactions on Signal Processing,2003,51(10):2592-2601.
  • 7[7]DOUCET A,GODSILL S J,ANDRIEU C.On sequential Monte Carlo sampling methods for Bayesian filtering[J].Statist Comput,2000,10(3):197-208.
  • 8[8]KOSTANTINOS N P,DIMITRIS H.Advanced signal processing handbook[M].Boca Raton:CRC Press LLC,2001.
  • 9左东广,韩崇昭,卞树檀,郑林,朱洪艳.闪烁噪声机动目标跟踪的模型集交互跟踪算法[J].系统仿真学报,2004,16(4):767-771. 被引量:19

共引文献8

同被引文献106

引证文献8

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部