期刊文献+

一种基于软阈值方法的改进A_1/A_2极化干涉分类算法 被引量:4

Improved A_1/A_2 PolInSAR classification algorithm based on soft threshold method
下载PDF
导出
摘要 在分析了极化干涉技术的发展现状和发展趋势的基础上,从极化干涉的特殊性入手,分析了干涉相干系数在极化干涉分类中的作用,并且系统分析了基于相干最优优化后的相干系数进行极化干涉分类过程的原理,总结了现有极化干涉分类算法在阈值选择方面存在的不足,阐述了硬阈值方法和软阈值方法的基本原理和它们之间的区别,最后提出基于软阈值方法的改进A1/A2非监督极化干涉分类算法,解决了极化干涉分类现有的分类空间中的阈值问题。实验表明这种方法能够得到更好的分类结果,做出了改进。 Based on analysis on development status and trend of polarization interference technology,this paper starts with the analysis of the particularity of PolInSAR;And then analyzes the role of coherence in PolInSAR classification process;Analyzes the principle of PolInSAR classification method based on the coherence optimization process;Summarizes the shortcomings in the choice of threshold in the classification process,and represents the principle and difference between the hard threshold and soft threshold;Finally proposes an improved A1/A2 unsupervised PolInSAR classification method based on the soft-threshold method,which has solved the problem of threshold choosing in classification.Experimental results have shown that this method can get better classification results than the existing A1/A2 classification algorithm.
出处 《国外电子测量技术》 2010年第7期21-26,共6页 Foreign Electronic Measurement Technology
基金 国家自然科学基金重大项目(60890071) <先进极化技术林业应用的研究和论证>项目(2008DFA11690)资助
关键词 极化干涉合成孔径雷达 相干最优 极化干涉分类 硬阈值 软阈值 A1/A2分类方法 polarimetric interferometric SAR(PolInSAR) coherence optimization PolInSAR classification hard threshold soft threshold A1/A2 classification method
  • 相关文献

参考文献16

  • 1HELLMANN M,CLOUDE S R,PAPATHANASSIOU K P.Classification using polarimetric and interferometric SAR-data[C].Proc.of IGRASS97,1997:1411-1413.
  • 2FERRO-FAMIL L,POTTIER E,LEE J S.Unsupervised classification andanalysis of natural scenes from polarimetric interferometric SARdata[C].Proc.of IGRASS2001,2002:2715-2717.
  • 3FERRO-FAMIL L,POTTIER E,LEE J S.Unsupervised classification and analysis of nature scenes from polarimetric SAR data[C].IEEE Proceedings of IGARSS'02,2002:635-637.
  • 4PRAKOSO K U.Tropical forest mapping using multibandpolarimetrie interferometric SAR data[C].Proc.of PoHn-SAR 2003,Roma,2003.
  • 5LEE J S,PAPATHANASSIOU K P,HAJNSEK I,et al.Applying polarimetric SAR interferometric data for forest classification[C].IGARSS 2005:IEEE International Geoscience And Remote Sensing Symposium,2005,1-8,,4848-4851.
  • 6汪洋,鲁加国,张长耀.基于Cameron分解和SVM的极化SAR图像分类[J].计算机工程与应用,2006,42(36):17-19. 被引量:3
  • 7曹芳,洪文,吴一戎.基于Cloude-Pottier目标分解和聚合的层次聚类算法的全极化SAR数据的非监督分类算法研究[J].电子学报,2008,36(3):543-546. 被引量:20
  • 8GE Yong,BAI Hexiang,LI Sanping,LI Deyu.Exploring the Sample Quality Using Rough Sets Theory for the Supervised Classification of Remotely Sensed Imagery[J].Geo-Spatial Information Science,2008,11(2):95-102. 被引量:1
  • 9LIN W C,OAKES M,TAIT J.Real AdaBoost for large vocabulary image classification[C].2008 International Workshop on Content-based Multimedia Indexing,2008:176-183.
  • 10COLIN E,TITIN-SCHNAIDER C,TABBARA W,et al.Polarimetric Interferometry and time-frequency analysis applied to a urban area at X-band[C].IGARSS 2005..IEEE International Geoseience and Remote Sensing Symposium,2005,1-8:1077-1080.

二级参考文献44

共引文献81

同被引文献36

  • 1张永军,李彩萍.合成孔径雷达模糊度分析[J].电子与信息学报,2004,26(9):1455-1460. 被引量:18
  • 2刘秀清,杨汝良.基于全极化SAR非监督分类的迭代分类方法[J].电子学报,2004,32(12):1982-1986. 被引量:8
  • 3ZHANG ZH M,WANG ZH S. On suppressing azimuth ambiguities of synthetic aperture radar by three filters [C]. Proc, CIE-Int, Conference Radar, 2001 : 624-626.
  • 4GUARNIERI A M. Adaptive removal of azimuth ambiguities in SAR images [J]. IEEE Trans, Geoscienee and Remote Sensing, 2005, 43 ( 3 ):625-633.
  • 5MOREIRA A. Suppressing the azimuth ambiguities in synthetic aperture radar images [J].IEEE Trans, Geoscience and Remote Sensing, 1993, 31 (4): 885-895.
  • 6RANEY R K,MEMBER S,PRINCZ G J. Reconsideration of azimuth ambiguities in SAR [J].IEEE Trans, Geoseience and Remote Sensing, 1987,25 (6) : 783-787.
  • 7LI C, XU C, GUI C, et al. Fox, level set evolution withoutre-initialization: a new variational formulation [C]. In Proco IEEE Conf. Comput Vis. Pattern Recognit. ,2005(1) :430-436.
  • 8LI C, XU C, GUI C, et al. Fox, distance regularized level set evolution and its application to image segmentation [J]. IEEE Trans. Image Processing, 2010,19(12) :3243-3254.
  • 9FAN ZH,YANG M Y,LIANG M K,et al. Nonlinear diffusion in laplacian pyramid domain for ultrasonic speckle reduetion[J]. IEEE Trans. Medical Imaging, 2007,26(2) :200-211.
  • 10ZHANG K H, SONG H H, ZHANG L. Active contours driven by local image fitting energy [J]. Pattern Recognit. ,2010,43(4): 1199-1206.

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部