摘要
本文详述了在仿蔡氏电路中发现的一些十分引人的混沌现象。文中首先描述了该电路的结构和状态方程,并根据Shilnikov定理从特征值的特点确定了该电路的混沌性质,然后介绍从实验研究到频谱分析得到的非常有价值的结果,即从平衡态开始经倍周期分叉导致混沌和从起始周期为1开始的周期-混沌-周期加1规律。文末还给出了改变参数G由Hopf分叉导致混沌的数值范围。
The present gaper describes some interesting phenomera discovered in the Similar Chua's Circuit. First of all it looks briefly at the circuit structure and state equation and then determines the chaotic behavior from the property of the eigenvalue according to Shilnikov theorem. Some valuable results are obtained by experiments and spectrum analysis, i. e., period doubling leads to chaos from the equilibrium and it obeys the law of period-chaos-peried plus 1. Finally, the paper offers a numerical range leading to chaos from Hopf bifurcation when parameter G is changed.