期刊文献+

客户流失预测数据挖掘方法对比分析

Comparative Analysis of Data Mining Method about Customers Churn Prediction
下载PDF
导出
摘要 本文分析了用于客户流失预测建模的主流技术及其优缺点,探讨了客户流失预测模型的研究方向,最后提出了云模型在客户流失预测中的应用。 The paper analyzes the mainstream modeling technology in customers chum prediction, and presents its advantages and disadvantages, simultaneously discusses research direction of customers churn prediction model, finally proposes the application of cloud model in customers churn prediction.
出处 《电脑学习》 2010年第4期76-78,共3页 Computer Study
关键词 客户流失 数据挖掘 预测模型 云模型 Customer Churn Data Mining Prediction Model Cloud Model
  • 相关文献

参考文献14

  • 1蒙肖莲,蔡淑琴,杜宽旗,寇建亭.商业银行客户流失预测模型研究[J].系统工程,2004,22(12):67-71. 被引量:19
  • 2Hyunseok Hwang ,Tsesoo and customer segmentation study on the wireless tel Jung .Euiho Sub. An LTV model based on customer value: A case industry[J]. Expert Systems with Applications, 2004,26 (2) : 181-188.
  • 3Wai-Ho Au,Chan CC,Xin Yao. A novel evolutionary data mining algorithm with applications to chum prediction[J]. IEEE Trans Evol Comput, 2003,7 (6) : 532-544.
  • 4桂现才,彭宏,王小华.C4.5算法在保险客户流失分析中的应用[J].计算机工程与应用,2005,41(17):197-199. 被引量:33
  • 5Jiayin Qi , Yangming Zhang , Yingying Zhang et al. TreeLogit model for customer churn prediction[C]. 2006 IEEE Asia-Pacific Conference on Services Computing, 2006.
  • 6H.W. Rygielski C,Wang J,Yen DG. Data mining techniques for customer relationship management[J]. Technology in Society (2002) ,24 (4) ,483-502.
  • 7Shin ,S.Y. Sohn. Seglnentation of stock trading customers according to potential value[J]. Expert Systems with Applications, 2004,27 (1) :27-33.
  • 8Sun Kim, Kyung-shik Shin,Kyungdo Park, An application of support vector machines for customer churn analysis:credit card case[C]. Advances in Natural Computation. First International C- onference, ICNC ,2005.
  • 9应维云,覃正,赵宇,李兵,李秀.SVM方法及其在客户流失预测中的应用研究[J].系统工程理论与实践,2007,27(7):105-110. 被引量:30
  • 10叶进,程泽凯,林士敏.基于贝叶斯网络的电信客户流失预测分析[J].计算机工程与应用,2005,41(14):212-214. 被引量:13

二级参考文献52

  • 1许建华,张学工,李衍达.支持向量机的新发展[J].控制与决策,2004,19(5):481-484. 被引量:132
  • 2Mozer M C,Predicting Subseriber Dissatisfation and Improving Retention in the Wireless Telecommunications Industry[J].IEEE Trans on Neural Networks, 2000; 11 (3)690~696.
  • 3Lian Yan.Predicting customer behavior in telecommunications[J].Intelligent Systems,IEEE,2004; 19(2) :50~58.
  • 4David Heckerman. A Turorial on Learning with Bayesian Networks.heckman@Microsoft.com, 1995-03.
  • 5.[EB/OL].www.ai.nit.edu/murphyk/Software/BNT/bnt.html,.
  • 6Cooper G,Herskovits E.A Bayesian method for the induction of probabilistic networks from data[J].Machine Learning, 1992 ;9:309~347.
  • 7JiaweiHart 范明 孟小峰译.MichelineKamber,数据挖掘概念与技术[M].北京:机械工业出版社,2001..
  • 8魏宗舒.概率论与数理统计[M].北京:高等教育出版社,1983..
  • 9Micheline K,Lara W,Wang G et al.Generalization and decision tree induction: efficient classification in data mining[EB/OL].ftp://ftp.fas.sfu.ca/pub/cs/han/kdd/ride97.ps, 1997-02-13.
  • 10quinlan Ross J.C4.5:Programs for Machine Leaming[M].SanMate,CA:Morgan Kaufmann Publishers, 1993.

共引文献90

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部