期刊文献+

白化处理的自然梯度盲源分离统一算法 被引量:4

Integrated Blind Source Separation Algorithm with Natural Gradient Based on Whitening Process
下载PDF
导出
摘要 分析了基于自然梯度的信号白化处理和白化后的盲信号分离,提出了一种基于白化处理的自然梯度盲源分离算法.算法统一了信号的白化和分离,而不需要单独再对信号进行白化预处理,通过采用自然梯度学习规则提高了算法的性能,并理论证明了算法的可分离性、等变化性和分离矩阵的非奇异性.仿真表明,算法能够有效地分离和重构源信号,相比信号未白化的随机梯度算法以及传统的FastICA算法,收敛速度快、分离效果好,更适合盲源分离. Through analyzing the whitening and separation process of signal based on natural gradient,a blind source separation algorithm with natural gradient based on whitening process is proposed.The algorithm colligates the whitening and separation of signal,and need not whiten the signal individually.By the application of natural gradient,the performance of algorithm is improved.Deduction proves that the algorithm satisfies the separation,equal variety and nonsingularity of separation matrix.Simulation shows that the algorithm can separate and reconstruct source signal effectively.Compared with the random gradient algorithm without signal's whitening and the conventional FastICA algorithm,it exhibits faster convergence as well as better separation effect and is more favorable for blind source separation.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2010年第7期1046-1050,共5页 Journal of Harbin Institute of Technology
基金 国家高技术研究发展计划资助项目(2008AA12Z305)
关键词 盲源分离 白化处理 自然梯度 代价函数 blind source separation whitening process natural gradient cost function
  • 相关文献

参考文献10

  • 1ERDOGMUS D, MANDIC D,TANAKA T. Advances in blind signal processing [ J ]. Neurocomputing, 2008, 71 : 2069 - 2070.
  • 2JUTFEN C, HERAULT J. Blind separation of sources, an adaptive algorithm based on neuromimetie architecture [J]. Signal Processing, 1991, 24(1) :1 - 10.
  • 3TONG L, LI R W, SOON V C. Indeterminacy and identifiability of blind identification[J]. IEEE Trans On Circuits and Systems, 1991, 38(5): 499-509.
  • 4COMON P. Blind separation of source, Part2: Problem statement[J]. Signal Processing, 1991, 24(1):21-29.
  • 5CICHOCKI A, UNBEHAUEN R, MOSZCZYNSKI L, et al. A new on-line adaptive learning algorithm for blind separation of source signals [ C ]//ISANN94. Taiwan: [s. n. ], 1994:406 -411.
  • 6CARDOSO J F, LAHELD B. Equivariant adaptive source separation [ J ]. IEEE Trans Signal Processing, 1996, 44(12) : 3017 -3030.
  • 7PARK H M, OH S H, LEE S Y. A modified infomax algorithm for blind signal separation [ J]. Neuro-computing, 2006, 70: 229- 240.
  • 8XIANG Yong. Blind source separation based on constant modulus criterion and signal mutual information [ J ]. Computers and Electrical Engineering, 2008, 34:416 - 422.
  • 9BOUSTANY R, ANTONI J. Blind extraction of a cyclostationary signal using reduced-rank cyclic regression-A unifying approach[ J]. Mechanical Systems and Signal Processing, 2008, 22:520 -541.
  • 10朱孝龙,张贤达,冶继民.基于自然梯度的递归最小二乘盲信号分离[J].中国科学(E辑),2003,33(8):741-748. 被引量:15

二级参考文献17

  • 1Yang H H, Amari S. Adaptive online learning algorithms for blind separation: Maximum entropy and minimum mutual information. Neural Computation, 1997, 9(5): 1457 - 1482.
  • 2Cardoso J F, Laheld B. Equivariant adaptive source separation. IEEE Trans Signal Processing, 1996, 44(12): 3017 - 3030.
  • 3Pajunen P, Karhunen J. Least-squares methods for blind source separation based on nonlinear PCA. Int J of Neural Systems,1998, 8(12): 601 - 612.
  • 4Karhunen J, Pajunen P, Oja E. The nonlinear PCA criterion in blind source separation: Relations with other approaches.Neurocomputing, 1998, 22:5 - 20.
  • 5Haykin S. Adaptive Filter Theory. 3rd Edition. New Jersey: Prentice Hall, 1996.
  • 6Eleftheriou E, Falconer D. Tracking properties and steady-state performance of RLS adaptive filter algorithms. IEEE Trans,ASSE 1986, 34(5): 1097 - 1109.
  • 7Poor H, Wang X D. Code-aided interference suppression for DS-CDMA communications, Part Ⅱ: Parallel blind adaptive implementations. IEEE Trans Comm, 1997, 45(9): 1112 - 1122.
  • 8Douglas S C. Self-stabilized gradient algorithms for blind source separation with orthogonality constraints. IEEE Trans Neural Networks, 2000, 11(6): 1490- 1497.
  • 9Amari S. Natural gradient learning for over and undercomplete bases in ICA. Neural Computation, 1999, 11 (8): 1875 - 1883.
  • 10Zhu X L, Zhang X D. Adaptive RLS algorithm for blind source separation using a natural gradient. IEEE Signal Processing Letters, 2002, 9(12): 432 - 435.

共引文献14

同被引文献45

  • 1游荣义,陈忠.基于小波变换的盲信号分离的神经网络方法[J].仪器仪表学报,2005,26(4):415-418. 被引量:13
  • 2刘实,王振力,张雄伟,陶然.基于协方差矩阵同时对角化的盲信号分离算法[J].北京理工大学学报,2007,27(10):919-923. 被引量:4
  • 3高上凯.浅谈脑—机接口的发展现状与挑战[J].中国生物医学工程学报,2007,26(6):801-803. 被引量:70
  • 4HUANG Lanying.An approach of key frame extraction based on mutual information[].ProcCNMT.2009
  • 5Abed-Meraim K,Xiang Y,Manton J H,et al.Blind source separation using secand-order cyclostationary statistics[].IEEE Transactions on Signal Processing.2001
  • 6Zhou GX,Yang ZY,Xie SL,et al.Online blind source sepa-ration using incremental nonnegative matrix factorization with volume constraint[].IEEE Transactions on Neural Networks.2011
  • 7Omlor L,Giese M A.Anechoic blind source separation using wigner marginals[].Journal of Machine Learning Research.2011
  • 8LaFleur K, Cassady K, Doud A, et al. Quadcopter control in three-dimensional space using a noninvasive motor imagery-based brain-computer interface [J]. Journal of Neural Engineering, 2013, 10(4) : 046003.
  • 9Ang K K, Chin Z Y, Zhang H, et al. Mutual infor- mation-based selection of optimal spatial-temporal patterns for single-trial EEG-based BCIs[J]. Pattern Recognition, 2012, 45(6):2137-2144.
  • 10Lemm S, Blankertz B, Dickhaus T, et al. Introduc- tion to machine learning for brain imaging[J]. Neuro- image, 2011, 56(2): 387-399.

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部