期刊文献+

嵌入式人手姿态肌电模式在线识别方法

Embeded online recognition of hand gesture EMG modes
下载PDF
导出
摘要 为了实现多自由度假手的肌电控制,需要嵌入式地实现先进模式识别方法.分别采用K近邻法及支持向量机分类方法,在样本充足以及相对匮乏的情况下,对实验中采集肌电信号的阈值特征集和稳态特征集进行了模式识别操作.实验结果表明,支持向量机的方法要明显优于近邻法,采用阈值数据作为训练样本要比稳态数据实时识别效果好.给出了一种在DSP内基于支持向量机进行10种人手姿态肌电模式的在线识别方法,识别率在95%以上,决策频率约为30Hz. Controlling a multi-DOF prosthetic hand by EMG signals demands for effective pattern recognition methods that can be easily embedded in the controller of the hand.In this paper,methods of K-nearest neighbor and support vector machine(SVM) were used to identify different modes of myoelectric signals,which were obtained in several on-line experiments.Both methods were performed on different training sample sets,called threshold set and steady-state set,and in the case of abundance and relative insufficiency of samples.Experimental results show that the SVM method is superior to K-nearest neighbor,and the real-time recognition results are better when using threshold dataset as training samples than using steady-state dataset.The proposed method,which is based on SVM and embedded in DSP,can discriminate 10 hand gesture EMG modes with a prediction accuracy of above 95% and a decision frequency of about 30 Hz.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2010年第7期1060-1065,共6页 Journal of Harbin Institute of Technology
基金 国家高技术研究发展计划资助项目(2009AA043803) 国家自然科学基金资助项目(60675045)
关键词 肌电信号 模式识别 支持向量机 myoelectric signal pattern recognition support vector machine
  • 相关文献

参考文献10

  • 1BONATO P, SHERRILL D M, STANDAERT D G, et al. Data Mining Techniques to Detect Motor Fluctuations in Parkinson's Disease[ C ]//Proceedings of the 26th Annual International Conference of the IEEE EMBS. San Francisco, CA, USA: IEEE Press, 2004:4766-4769.
  • 2LARIVIERE C, GRAVEL D, ARSENAULT A B, et al. Muscle recovery from a short fatigue test and consequence on the reliability of EMG indices of fatigue [ J ]. European Journal of Applied Physiology, 2003, 89 (2) : 171 - 176.
  • 3MOBASSER F, HASHTRUDI-ZAAD K. Hand Force Estimation using Electromyography Signals [ C ]//Proceedings of the 2005 IEEE International Conference on Robotics and Automation. Barceiona, Spain: IEEE Press, 2005:2631 - 2636.
  • 4FARRY K A, WALKER I D, BARANIUK R G. Myoelectric teleoperation of a complex robotic hand [ J ]. IEEE Transaction on Robotics and Automation, 1996, 12(5) :775 -788.
  • 5BITZER S, VAN DER SMAGT P. Learning EMG control of a robotic hand : Towards active prostheses [ C ]// Proceedings 2006 International Conference on Robotics and Automation. Orlando, Florida, USA: IEEE Press, 2006:2819 -2823.
  • 6CRISTIANINI N, SHAWE-TAYLOR J. An Introduction to Support Vector Machines[ M]. Cambridge, England: Cambridge University Press, 2000.
  • 7KNERR S, PERSONNAZ L, DREYFUS G. Single-layer learning revisited: a stepwise procedure for building and training a neural network[ M ]. Berlin: Springer, 1990.
  • 8FARRELL T R, WEIR R F. The optimal controller delay for myoelectric prostheses [ J ]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2007, 15(1) :111 -118.
  • 9ENGLEHART K, HUDGINS B, PARKER P A. A wavelet-based continuous classification scheme for multifunction myoelectric control [ J ]. IEEE Transactions on Biomedical Engineering, 2001, 48(3) : 302-311.
  • 10FAN R E, CHEN P H, LIN C J. Working set selection using the second Order information for training SVM [J]. Journal of Machine Learning Research, 2005,6 : 1889 - 1918.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部