期刊文献+

突扩管流中微米颗粒分离效率的研究

SEPARATION EFFICIENCY OF MICROPARTICLE IN THE DIVERGENT ELECTROKINETIC MICROCHANNEL FLOW
下载PDF
导出
摘要 借助欧拉和拉格朗日方法数值模拟了突扩微尺度管道流中微米颗粒的分离情况.在采用有限体积法求解电荷密度场、电场和流场的基础上,通过基于改进的Langevin方程研究了微管道中不同位置处的微米颗粒在水动力和介电电泳力综合作用下的运动轨迹.研究发现:电渗流的驱动能力随着扩张比(ER)的增加而提高,然而其提高的趋势逐渐变小;当微米颗粒仅在水动力作用下时,随着ER的增加,颗粒之间的有效分离距离(ESL)随之线性增加,此时ESL与ER的比值约为5.9;若是考虑介电电泳力对于微米颗粒运动的影响,ESL与ER的比值下降为4.79,由此可以看出介电电泳力对突扩微管道流中的微米颗粒的分离效果有着一定的负面影响.上述结论对于基于介电电泳技术设计的生物粒子分离芯片的优化设计有很大价值. This study reports a numerical simulation of separation efficiency of microparticles in the divergent microchannel flow using the Eulerian and Lagrangian methods.The flow field,ion field and electric field are simulated numerically with finite volume method first,then microparticles are injected from the inlet of the microchannel and tracked with the Langevin-equation-based model,in which dielectrophoretic force is included. It has been found that the microchannel's pumping capability increases with the increase of divergent ratio (ER).In addition,the effective separation length between microparticles increases linearly with the increase of ER.With and without consideration of Dielectrophoresis(DEP),the ration of ESL to ER is 5.9 and 4.79, respectively.It means that the negative DC-DEP always reduces the separation efficiency in the divergent microchannel.The aforementioned conclusion is helpful for the design optimization of separation apparatus.
出处 《力学学报》 EI CSCD 北大核心 2010年第4期629-636,共8页 Chinese Journal of Theoretical and Applied Mechanics
基金 国家自然科学基金(10902105 10632070) 浙江省自然科学基金(Y6090406)资助项目~~
关键词 电渗流 介电电泳 粒径 分离 electroosmosis dielectrophoresis separation particle size
  • 相关文献

参考文献11

  • 1Castellanos A, Ramosl A, et al. Electrohydrodynamics and dielectrophoresis in microsystems: scaling laws. Journal of Physics D: Applied Physics, 2003,36:2584-2597.
  • 2Nie DM, Lin JZ, Zhang K. Lattice Boltzmann simulation of electroosmosis flow in MEMS with a sudden expansion or contraction. Chinese Journal of Scientific Instrument, 2009, 30(6): 198-204.
  • 3Zhang K, Nie DM, Wang HL. Research on the effectiveness of DC-Dielectrophoresis separation of microparticle by size. Chinese Journal of Scientific Instrument, 2009, 30(6): 147-151.
  • 4Pohl HA, Hawk I. Separation of living and dead cells by dielectrophoresis. Science, 1966, 152:647-649.
  • 5Zheng L, Brody JP, Burke PJ. Electronic manipulation of DNA, proteins, and nanoparticles for potential circuit assembly. Biosensors and Bioeleetronics, 2004, 20:606-619.
  • 6Shaikh FA, Ugaz VM. Collection, focusing, and metering of DNA in microchannels using addressable electrode arrays for portable low-power bioanalysis. Proceedings of the National Academy of Sciences, 2006, 103:4825-4830.
  • 7Krupke R, Hennrich F, et al. Separation of metallic from semiconducting single-walled carbon nanotubes. Science, 2003, 301:344-347.
  • 8Xiong XG, Busnaina A, Selvarasah S, et al. Directed assembly of gold nanoparticle nanowires and networks for nanodevices. Applied Physics Letters, 2007, 91:063101.
  • 9Kang Y J, Li DQ, Kalams SA. DC-Dielectrophoretic separation of biological ceils by size. Biomed Microdevices, 2008, 10:243-249.
  • 10Irena BN, Xuan XC, Leea JSH, et al. DC-dielectrophoretic separation of microparticles using an oil droplet obstacle. Lab Chip, 2006, 6:274-279.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部