期刊文献+

基于分片线性近似方法的煤油干点估计 被引量:1

Inferential estimation of kerosene dry point via piecewise linear approximation
下载PDF
导出
摘要 在流程工业中,煤油干点的估计对于产品质量控制有着重要的意义。因为原油组分时常变化,目前还不存在一种通用有效的模型来适应这些变化所带来的不同特性。本文引入自适应链接超平面(AHH)这一新颖的连续分片线性表示方法,建立了软测量模型。干点估计的仿真测试结果显示了该模型具有良好的拟合能力。而在实际数据上的测试表明,自适应链接超平面的模型在表达能力上优于已有的基于分类的建模方法。由于利用AHH的估计方法可以适应多变的生产工况,因而对于其他具有复杂多变工况的化工过程中具有推广价值。 The estimation of kerosene dry point is important for quality control in process industry.Since the crude oil changes with varying compositions,there does not exist any effective model to cover different inherent characteristics.In this paper,adaptive hinging hyperplane (AHH),a novel piecewise linear method is introduced to build soft sensor model.A dry point estimation simulating experiment shows the good result.And the test on practical data reveals that AHH method has a better performance than the existing models based on classification information.It is expected that the method can be extended to other chemical process estimation with varying situations.
出处 《化工学报》 EI CAS CSCD 北大核心 2010年第8期2035-2039,共5页 CIESC Journal
基金 国家高技术研究发展计划项目(2007AA04Z193) 国家自然科学基金项目(60974008 60704032)~~
关键词 原油精馏 干点 自适应链接超平面 数据驱动建模 crude distillation dry point adaptive hinging hyperplane data-driven model
  • 相关文献

参考文献16

  • 1梁军,汪小勇,王文庆.基于神经网络PLS方法的软测量建模研究[J].浙江大学学报(工学版),2004,38(6):676-681. 被引量:8
  • 2Xiong Zhihua, Huang Guohong, Shao Huihe. On-line estimation of concentration parameters in fermentation processes. Journal of Zhejiang University : Science, 2005, 6B (6): 530-534.
  • 3Boll N, Galinec G, Ivandic M. Soft sensors for kerosene properties estimation and control in crude distillation unit. Chemical and Biochemical Engineering Quarterly, 2009, 23 (3): 277- 286.
  • 4Kano M, Miyazaki K, Hasebe S, et al. Inferential control system of distillation compositions using dynamic partial least squares regression. Journal of Process Control, 2000, 10 (2/3): 157-166.
  • 5Zhang J. Inferential feedback control of distillation composition based on PCR and PLS models//Proceedings of the 2001 American Control Conference. Arlington, VA, USA.. IEEE Inc., 2001.
  • 6吕文祥,摆亮,黄德先,江永亨,刘先广,朱朝宾,李占龙,张代欣.针对原油性质变化的常减压先进控制研究与应用[J].化工学报,2009,60(10):2522-2528. 被引量:7
  • 7吕文祥,黄德先,金以慧.常压蒸馏产品质量软测量改进方法及应用[J].控制工程,2004,11(4):296-298. 被引量:9
  • 8Zhou C, Liu Q, Huang D, et al. Inferential estimation of kerosene dry point in refineries with varying crudes. Computer Aided Chemical Engineering, 2009, 48 (4): 661- 679.
  • 9Chua L O, Kang S M. Section wise piecewise-linear functions: canonical representation, properties, andapplications. IEEE Trans. Circuits Systems, 1977, 65 (6): 915-929.
  • 10Tarela Jm A E M M. A representation method for Pwl functions oriented to parallel processing. Mathematical and Computer Modelling, 1990, 13 (10):75-83.

二级参考文献23

  • 1吕文祥,黄德先,金以慧.常压蒸馏产品质量软测量改进方法及应用[J].控制工程,2004,11(4):296-298. 被引量:9
  • 2KANO M. Inferential control system of distillation compositions using dynamic PLS regression [J]. Journal of Process Control, 2000, 10: 157-166.
  • 3WOLD S, KETTANEH-WOLD N, SKAGERBERG B. Nonlinear PLS modeling [J]. Chemometrics and Intelligent Laboratory Systems, 1989, 7:53-56.
  • 4WOLD S. Nonlinear PLS modeling II: Spline inner relation (SPL-PLS) [J]. Chemometrics and Intelligent Laboratory Systems, 1992, 14: 71-84.
  • 5QIN S J, MCAVOY T J. Nonlinear PLS modeling using neural networks [J]. Computer and Chemical Engineering, 1992, 16: 379-392.
  • 6Tellman L D, I.eahy M B. Multiple model-based control: development and initial evaluation//Proceedings of the 28th IEEE Conference on Decision and Control. Tampa, 1989: 2519-2524.
  • 7Aufderheide B, Prasad V, Bequette B W. A comparison of fundamental model-based and multiple model predictive control//Proceedings of the 40th IEEE Conference on Decision and Control. Orlando, 2001 : 4863-4868.
  • 8Zhao Zhong, Xia Xiaohua, Wang Jingchun, Gu Jian, Jin Yihui. Nonlinear dynamic matrix control based on multiple operating models. Journal of Process Control, 2003, 13 (1) : 41-56.
  • 9Pinto J M, Joly M, Moro L F L, Planning and scheduling models for refinery operations. Comp. Chem. Eng. , 2000, 24 (9/10): 2259-2276.
  • 10Joly M, Moro L F L, Pinto J M. Planning and scheduling for petroleum refineries using mathematical progTamming. Brazilian Journal of Chemical Engineering, 2002, 19 (2): 207-228.

共引文献20

同被引文献55

引证文献1

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部