期刊文献+

用勾连法解决8m×8n棋盘上的马周游闭路问题 被引量:2

RESOLVING KNIGHT TOUR PROBLEM BY USING HOOKING METHOD
下载PDF
导出
摘要 马周游路线问题是图论中最著名的经典问题之一,多年来吸引了众多的研究者.某些文献曾给出一些马的周游路线.本文将给出一种新解法——勾连法,它更简单,更自然,更好理解,更有效,能在一个小时内计算出上千个周游闭路.更为重要的是,这种方法推广到8m×8n的大棋盘上(m和n是任意正整数),也能找出上千个周游闭路,而且随m和n的增加,所用时间并没有明显增加. Knight Tour' is one of the most famous problems in the classical graph theory. In the past long time it had a strong appeal to a lot of researchers. Some papers gave a few heuristic search methods,by which some knight tour paths might be found. This paper presents a new method-hooking method. which is more simple, more natural, easier to understand, more effective, by which thousands of solutions can be gotten in a short time. It is more important that thousands of tour closed paths may be also gotten quickly when the method may be applied on the bigger chess board of size 8m×8n. Therefore it solves the Knight Tour problem on the 8m×8n board successfully.
出处 《小型微型计算机系统》 CSCD 北大核心 1999年第3期233-240,共8页 Journal of Chinese Computer Systems
关键词 哈密顿路 勾连法 马周游闭路问题 图论 The Knight Tour Hamiltonian path Hamiltonian cycle Back tracking method Hooking method
  • 相关文献

参考文献3

共引文献4

同被引文献8

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部