期刊文献+

形状梯度法求解不可压缩流的形状优化问题

Function Space Parameterization Technique for Shape Optimization Problem of Incompressible Fluid
下载PDF
导出
摘要 流体中物体形状优化设计在实践中有重要的应用。对于区域内由Navier-Stokes方程描述的流体,本文研究以流体状态的泛涵为目标函数的优化问题。基于共轭方法与函数空间参数化方法,本文得到了问题的形状导数。在此基础上构造了一种共轭梯度算法。数值例子表明本文的方法是可行的和稳定的。 The shape optimal design for fluid is very important in applications. For a fluid in a region described by a Navier-Stokes equation, our cost fuction is a functional of states of the fluid. Based on the adjoint method and a parametrization method, a formulae of the shape derivatives is established for the problem. Then a conjugate-graduate algorithm is proposed. The numerical examples show the effectiveness and stability of the algorithm.
出处 《工程数学学报》 CSCD 北大核心 2010年第4期652-662,共11页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金(10671153 40730424)~~
关键词 形状优化 NAVIER-STOKES方程 极大极小值问题 shape optimization Navier-Stokes minimax formulation
  • 相关文献

参考文献2

二级参考文献11

  • 1Temam R. Navier-Stokes equations: theory and numerical analysis[M]. North-Holland Amsterdan, NewYork, 1984
  • 2Girault V, Raviart P A. Finite element methods for the Navier-Stokes equations: theory and algorithms[M].Springer-Verlag, Berlin, 1986
  • 3Heywood J G, Rannacher R. Finite element approximation of the nonstationary Navier-Stokes problem,Ⅰ: Regularity of solutions and second-order error estimates for spatial discretization[J]. SIAM J Numer Anal, 1982;19:275-311
  • 4Ammi A O, Marior M. Nonlinear Galerkin methods and mixed finite elements: two-grid algorithms for the Navier-Stokes equations[J]. Numer Math, 1994;68:189-213
  • 5任春风.[D].西安交通大学,2003.
  • 6Dziri R, Zolesio J P. Dynamical shape control in noncylindrical Navier Stokes equations[J]. Journal of Convex Analysis, 1999, 6(2): 293-318
  • 7Lions J L. Singular perturbations and some nonlinear boundary value problems[R]. Report 421, MRC, Wisconsin, 1963:1-36
  • 8Araujo G M, et al. On the Navier Stokes equations with variabe viscousity in a noncylindrical domains[R]. to appear
  • 9Delfour M C, Zolesio J P. Shapes and Geometries: Analysis, Differential Calculus, and Optimization[M]. SIAM, 2002
  • 10Lions J L. Quelques Methodes de Resolutions Des Problemes Aux Limites Non Linearies[M]. Dunod, Paris, 1969

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部