期刊文献+

关于随机时滞神经网络稳定性的注记(英文) 被引量:3

A Note on Stability of Stochastic Delay Neural Networks
下载PDF
导出
摘要 利用非负鞅收敛定理、Lyapunov泛函方法和网络自身的特性讨论了变时滞随机递归神经网络的随机指数稳定性,给出了这类神经网络随机指数稳定性的新的代数准则,所给代数准则简单易用。两个应用实例说明即使针对随机Hopfield神经网络所给的代数准则也优于相关的判别准则。 The almost exponential stability for a stochastic recurrent neural network with time-varying delays is discussed by means of a nonnegative semi-martingale convergence theorem, the Lyapunov functional method and the characteristics of stochastic delay recurrent neural networks. The new algebraic criteria of the almost exponential stability for the stochastic recurrent neural network with time-varying delays is derived. These algebraic criteria are simple and practical. Two examples show these new algebraic criteria are better than the relative criteria for the stochastic Hopfield neural network.
出处 《工程数学学报》 CSCD 北大核心 2010年第4期720-730,共11页 Chinese Journal of Engineering Mathematics
基金 The National Natural Science Foundation of China(10971240 10371083) the Natural Science Foundation of Huaihai Institute of Technology(KK06004)
关键词 随机递归神经网络 变时滞 随机指数稳定性 样本Lyapunov指数 stochastic recurrent neural networks time-varying delays almost sure exponential stabil- ity sample Lyapunov exponent
  • 相关文献

参考文献3

二级参考文献19

  • 1廖晓昕,杨叔子,程时杰,付予力.Stability of general neural networks with reaction-diffusion[J].Science in China(Series F),2001,44(5):389-395. 被引量:8
  • 2牛健人,张子方,徐道义.变时滞Cohen-Grossberg随机神经网络的均方指数稳定性[J].工程数学学报,2005,22(6):1001-1005. 被引量:10
  • 3Mao X. Razumikhin-type theorems on exponential stability of stochastic functional differential equations[J].Stochastic Processes and Their Applications, 1996,65:233-250
  • 4Friedman A. Stochastic Differential Equations and Their Applications[M]. New York: Academic Press,1976
  • 5Liao X X. Theory and Applications for Dynamical Systems[M]. Beijing: National Defensive Industry Press,2000
  • 6Liao X X, Mao X. Stability of stochastic neural networks[J]. Neural, Parallel and Scientific Computations,1996,4:205-224
  • 7Mao X, Selfridge C. Stability and instability of stochastic interval systems[J]. Dynamic Systems and Applications, 1999,8:271-286
  • 8Mao X, Alexandra R, Natalia K. Rumikhin-type theorems for stochastic functional differential equations[J].Functional Differential Equations, 1998,5(1-2):195-211
  • 9Liu Y, Feng Z. Large-Scale Dynamic Systems: Theory and Applications[M]. Guangzhou: SCUT Press,1992
  • 10Mao X. Razumikhin-type theorems on exponential stability of neutral stochastic functional differential equations[J]. SIAM J Math Anal, 1997,28(2):389-401

共引文献16

同被引文献14

  • 1Gu K, et al. Stability of Time-Delay Systems[M]. Boston: Birkhauser, 2003.
  • 2Fridman E, Shaked U. An improved stabilization method for linear time-delay systems[J]. IEEE Transac- tions on Automatic Control, 2002, 47(11): 1931-1937.
  • 3He Y, et al. Delay-dependent robust stability criteria for uncertain neutral systems with mixed delays[J]. Systems & Control Letters, 2004, 51(1): 57-65.
  • 4Zuo Z, Wang Y. New stability criterion for a class of linear systems with time-varying delay and nonlinear perturbations[J]. IEE Proceedings-Control Theory & Applications, 2006, 153(5): 623-626.
  • 5Han Q L, Yu L. Robust stability of linear neutral systems with nonlinear parameter perturbations[J]. IEE Proceedings-Control Theory &: Applications, 2004, 151(5): 539-546.
  • 6Chen Y, et al. On robustly exponential stability of uncertain neutral systems with time-varying delays and nonlinear perturbations[J]. Nonlinear Analysis: Theory, Methods ~z Applications, 2008, 68(8): 2464-2470.
  • 7Zhang J H, et al. Robust stability criteria for uncertain neutral system with time delay and nonlinear uncertainties[J]. Chaos, Solitons 8z Fractals, 2008, 38(1): 160-167.
  • 8Qiu F, et al. Further results on robust stability of neutral system with mixed time-varying delays and nonlinear perturbations[J]. Nonlinear Analysis: Real World Applications, 2010, 11(2): 895-906.
  • 9Mahmoud M S. Resilient Control of Uncertain Dynamical Systems[M]. Berlin: Springer, 2004.
  • 10Hale J K, Verduyn L S M. Introduction to Functional Differential Equations[M]. New York: Springer, 1993.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部