摘要
利用非负鞅收敛定理、Lyapunov泛函方法和网络自身的特性讨论了变时滞随机递归神经网络的随机指数稳定性,给出了这类神经网络随机指数稳定性的新的代数准则,所给代数准则简单易用。两个应用实例说明即使针对随机Hopfield神经网络所给的代数准则也优于相关的判别准则。
The almost exponential stability for a stochastic recurrent neural network with time-varying delays is discussed by means of a nonnegative semi-martingale convergence theorem, the Lyapunov functional method and the characteristics of stochastic delay recurrent neural networks. The new algebraic criteria of the almost exponential stability for the stochastic recurrent neural network with time-varying delays is derived. These algebraic criteria are simple and practical. Two examples show these new algebraic criteria are better than the relative criteria for the stochastic Hopfield neural network.
出处
《工程数学学报》
CSCD
北大核心
2010年第4期720-730,共11页
Chinese Journal of Engineering Mathematics
基金
The National Natural Science Foundation of China(10971240
10371083)
the Natural Science Foundation of Huaihai Institute of Technology(KK06004)
关键词
随机递归神经网络
变时滞
随机指数稳定性
样本Lyapunov指数
stochastic recurrent neural networks
time-varying delays
almost sure exponential stabil- ity
sample Lyapunov exponent