摘要
本文讨论一类具离散时变时滞和分布时滞神经网络的指数稳定性。利用非线性测度,本文得到一个与时滞无关的充分条件,它保证了平衡点的存在性、唯一性和指数稳定性。既然新稳定准则不要求激活函数的有界性、单调性及可微性和随时间改变的传递延迟函数的可微性,那么它是某些已有结果的推广。此外,本文的方法的另一个优点是给出了解的指数收敛速度。最后,给出的例子说明我们的方法是有效的。
The paper is devoted to the exponential stability of a class of neural networks with both discrete time-varying and distributed delays. In virtue of nonlinear measure, a delay- independent suffcient condition is derived for the existence, uniqueness and exponential stability of the equilibrium point. Since assumptions on boundedness, monotonicity and di?erentiability of activation functions and differentiability of time-varying transmission delay functions are avoided, the new stability criterion is an extension of some existing results. Moreover, an additional merit of the method is to provide the exponentially con- vergent velocity of the solutions. Finally, an example is provided to illustrate effectiveness of the method.
出处
《工程数学学报》
CSCD
北大核心
2010年第4期731-740,共10页
Chinese Journal of Engineering Mathematics
基金
The National Natural Science Foundation of China(60970149)
the Special Fund for Basic Scientific Research of Central Colleges(CHD2009JC050)
the Special Fund for Basic Research Support Programm in Chang'an University
关键词
指数稳定性
神经网络
分布时滞
时变时滞
非线性测度
exponentially stability
neural networks
distributed delays
time-varying delays
nonlinear measure