期刊文献+

一类随机顾客车辆路径问题及其算法 被引量:1

Stochastic Customer Vehicle Routing Problem and Its Algorithm Analysis
下载PDF
导出
摘要 针对一类随机顾客车辆路径问题(Vehicle routing problem with stochastic customer,VRPSC),探讨了VRPSC的实时动态规划机制,并结合运送货物需求量的不同特性,分析了车辆供货中遇到服务路线失败时的两种不同服务策略并构建了相应的模型。设计了针对VRPSC的蚁群算法,并选用60个节点的基准问题对VRPSC的动态模型进行了仿真计算。结果表明,对顾客信息进行数据挖掘以获取较精确经验概率以及采用部分服务策略均有助于缩短车辆总行驶路径,为有效降低车辆的运行成本提供了科学依据。 To solve the vehicle routing problem with stochastic customer(VRPSC),this paper discusses the real-time dynamic planning mechanism of VRPSC,combined with different characteristics of the demand of the transported goods,analyses two kinds of different service tactics when the vehicle meets the route fails.And the corresponding models are established.With the designed ant colony optimization for VRPSC it uses the benchmark of 60 nodes to test the dynamic models of VRPSC.Results indicate that the data excavate on customer information is carried on to obtain accurate experience probability and using partly service strategy to shorten the general vehicle routing.It offers a scientific basis for reducing the vehicle operating cost.
作者 陆琳 蔡绍洪
出处 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2010年第4期521-525,共5页 Journal of Nanjing University of Aeronautics & Astronautics
基金 国家社会科学基金(09CJY074)资助项目 贵州省科技基金(黔科合J字[2009]2120[2010]2098)资助项目 贵州省教育厅自然科学重点(黔教科20090013)资助项目 贵州财经学院引进人才资助项目
关键词 车辆路径问题 随机顾客 蚁群算法 vehicle routing problem stochastic customer ant colony optimization
  • 相关文献

参考文献10

  • 1Chepuri K,Homem-de-Mello T.Solving the vehicle routing problem with stochastic demands using the cross-entropy method[J].Annals of Operation Research,2005,134(1):153-181.
  • 2陆琳,谭清美.一类随机需求VRP的混合粒子群算法研究[J].系统工程与电子技术,2006,28(2):244-247. 被引量:15
  • 3陈宝文,宋申民,陈兴林.随机需求车辆路径问题及其启发式算法[J].计算机工程与设计,2007,28(1):138-141. 被引量:7
  • 4Waters C.Vehicle scheduling problems with uncertainty and omitted customers[J].Journal of the Operational Research Society,1989,40(5):1099-1108.
  • 5Laporte G,Louveaux F,Mercure H.A priori optimization of the probabilistic traveling salesman problem[J].Operations Research,1994,42(3):543-549.
  • 6娄山佐,史忠科.基于交叉熵法解决随机用户和需求车辆路径问题[J].控制与决策,2007,22(1):7-10. 被引量:9
  • 7Colorni A,Dorigo M,Maniezzo V,et al.Distributed optimization by ant colonies[C] //Proc of the First European Conf on Artificial Life.Paris:Elsevier Publishing,1991:134-142.
  • 8Dorigo M,Gambardella L M.Ant colony system:a cooperative learning approach to the traveling salesman problem[J].IEEE Trans on Evolutionary Computation,1997,1(1):53-66.
  • 9Stutzle T,Hoos H H.MAX-MIN ant system[J].Future Generation Computer Systems,2000,16(8):889-914.
  • 10Ted R.Data of VRP[EB/OL].[2009-12-07].http://www.branchandcut.org/pub/data/VRP/html.

二级参考文献31

  • 1吴一民,徐建闽,胡郁葱.一种基于层次图模型的最优路径算法[J].计算机工程与设计,2005,26(2):317-319. 被引量:8
  • 2刘毅松,孙雨耕,胡华东,于洁潇.超限车辆的最短路径在MAPGIS中的实现[J].计算机工程与设计,2005,26(9):2335-2337. 被引量:1
  • 3Gendreau M,Laporte G,Seguin R.Stochastic vehicle routing[J].European Journal of Operational Research,1996,88:3-12.
  • 4Kennedy J,Eberhart R C.Particle swarm optimization[C]//Proc.IEEE International Conference on Neural Net-works,Ⅳ.Piscataway,NJ:IEEE Service Center,1995.1942-1948.
  • 5Eberhart R C,Shi Y.Particle swarm optimization:developrents,applications and resources[C]//Proc.of Congresson EvolutionaryComputation.Piscataway,NJ:IEEE Press,2001:81-86.
  • 6Christos Voudouris,Edward Tsang.Partial constraint satisfaction problems and guided local search[C] //Proc.of the Second International Conference on the Practical application of Constraint Technology,1996.
  • 7Nicola Secomandi.Comparing neuro-dynamic programming algorithms for the vehicle routing problem with stochastic demands[J].Computers & Operations Research,2000,27:1201-1225.
  • 8Gendreau M,Laporte G,Séguin R.An exact algorithm for the vehicle routing problem with stochastic demands and customers[J].Transportation Science,1995,29:143-155.
  • 9Stewart W R,Golden B L.Stochastic vehicle routing:a comprehensive approach[J].European Journal of Operational Research,1983,14:371-385.
  • 10Bertsimas D J.A vehicle routing with stochastic demands[J].Operation Research,1992,40:574-585.

共引文献24

同被引文献11

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部