期刊文献+

高阶精度间断Galerkin有限元方法研究

Investigation of High-order Discontinuous Galerkin Finite Element Method
下载PDF
导出
摘要 在二维非结构网格上,对高阶精度间断Galerkin有限元方法求解跨音速欧拉方程进行研究。运用间断有限元理论,采用施密特正交化多项式基函数对流场解进行近似描述,使用HLLC近似黎曼解方法计算网格单元边界处的数值通量,积分项通过高斯积分求解,时间推进采用经典四步Runge-Kutta方法,并引入斜率限制器,抑制数值振荡。对NACA0012翼型跨音速无粘流动进行数值模拟,数值结果表明:间断Galerkin有限元方法具有较高的精度,较小的数值耗散和较强的激波捕捉能力。 This paper deals with a high-order accurate discontinuous Galerkin finite element method for the numerical solution of the transonic Euler equations.Based on the theory of discontinuous finite element method,within each element the solutions are expanded in a series of Schmidt orthogonal polynomials base functions.The nonlinear numerical flux is discretized by using the HLLC fluxs and the integration terms are calculated by using Gaussian quadrature rules;Time is advanced by explicit forth-order accurate Runge-Kutta method and slope limiter is constructed to suppress numerical oscillations.Transonic inviscid flow over a NACA0012 airfoil was simulated by this method.The numerical results indicate that the discontinuous Galerkin method has properties of high-order accuracy,smaller numerical dissipation and excellent ability to capture shocks.
出处 《航空计算技术》 2010年第4期35-38,52,共5页 Aeronautical Computing Technique
关键词 间断有限元 斜率限制器 HLLC 非结构网格 discontinuous galerkin method slope limiter HLLC unstructured grids
  • 相关文献

参考文献8

  • 1Reed N H,Hill TR.Triangle mesh methods for the Neutron transport equation[R].Los Almos Scientific Laboratory,report laur-73-479,1973.
  • 2B Cockburn,C-W Shu.The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV:The multidimensional case[J].Math.Compute,1990,54:545.
  • 3B Cockburn,C-W Shu.TVB Runge-Kutta discontinuous Galerkin method for conservation laws V:Multidimensional systems[J].J.Comp.Phys.1998,144:199-224.
  • 4Krivodonova L.Shock detection and limiting with discontinuous Galerkin methods for hyperbolic conservation laws,geometries[J].Applied Numerical Mathematics,2004,48:323-338.
  • 5J Qiu,C-W Shu.Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method:one dimensional case[J].J.Comp.Phys.2004,193:115-135.
  • 6Hong Luo,Joseph D.Baum Extension of Harten-Lax-van Leer Scheme for Flows at All Speeds[J].AIAA Journal,2005,43(6).
  • 7E F TORO,M SPRUCE,W SPEARES.Restoration of the contact surface in the HLL Riemann solver[J].Shock Waves,1994(4):25-34.
  • 8A Jameson,W Schmidt,and E.Turkel Numerical Solutions of the Euler Equations by Finite Volume Methods Using Runge-Kutta Time-Stepping Schemes[R].AIAA Paper 81-1259,AIAA 14th Fluid and Plasma Dynamic Conference,Palo Alto,June 1981.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部