期刊文献+

基于小波阈值算法的海杂波信号降噪 被引量:5

Sea Clutter Signal Denoising Based on Wavelet Threshold
下载PDF
导出
摘要 为有效提取噪声背景下的海杂波信号,针对海杂波信号非线性非平稳的特点,提出基于小波阈值算法对实测海杂波数据去噪。在噪声水平未知条件下,提出基于噪声主要在高频段且能量较小、信号主要集中在低频段思想的噪声判断准则。为验证小波去噪效果,将该算法对含有噪声的海杂波实测数据进行去噪,采用均方差和降噪信号信噪比两项指标衡量去噪效果,并与均值和中值等去噪方法对比,小波算法在这两项指标均优于其他算法;此外,实验结果还表明,db2小波在双曲线阈值函数和HeurSure阈值模式下优于其他小波去噪效果。 In order to effectively extract the sea clutter signal within noisy background,a signal-filtering method based on Wavelet threshold(VT) is presented for sea clutter denoising considering the real sea clutter is nonlinear and nonstationary.As to the noise-level is unknown,this paper presents a noise judge criterion based on the basic idea that the noise is concentrated on high-frequency ones and contains little energy,while the energy of signal is mainly concentrated on the low frequency ones.The noisy real-life sea clutter dataset is used to test the validity of VT denoising,denoised signal-to-noise ratio(DSNR) and mean square error(MSE) are employed to measure the efficiency of noise reduction,and the EMD filtering outperforms averaging,median.Besides,db2 wavelet with HeurSure threshold and Hyperbolic thresholding function is better than the other wavelets for denoising.
出处 《海洋测绘》 2010年第4期19-22,共4页 Hydrographic Surveying and Charting
关键词 海杂波信号 非线性非平稳 小波阈值算法 噪声判断准则 去噪 sea clutter signal nonlinear and nonstationary wavelet threshold noise judge criterion denoising
  • 相关文献

参考文献10

  • 1Haykin S,Bakker R,Currie B W.Uncovering Nonlinear Dynamics-the Case Study of Sea Clutter[J].Proceedings of the IEEE,2002,90(5):860-881.
  • 2Jing H,Wenwen T,Jianbo G.Detection of low observable targets within sea clutter by structure function based multifractal analysis[J].IEEE Transaction on Antennas and Propagation,2006,54(1):136-143.
  • 3王福友,袁赣南,卢志忠,郝燕玲.X波段导航雷达浪高实时测量研究[J].海洋工程,2007,25(4):84-87. 被引量:21
  • 4王福友 袁赣南 卢志忠.国内外基于雷达测量海浪技术研究进展.测绘科学,2008,33(4):18-20.
  • 5Haykin S,Puthusserypady S.Chaotic Dynamic of Sea Clutter[J].Chaos,1997,7(4):777-802.
  • 6Borge J C N,Reichert K.Use of Nautical Radar As a Wave Monitoring Instrument[J].Coastal Engineering,1999,37:331-342.
  • 7王福友,袁赣南,谢燕军,乔相伟.海杂波的短时非线性预测研究[J].雷达科学与技术,2009,7(1):52-58. 被引量:7
  • 8张俊,柳健.SAR图像斑点噪声的小波软门限滤除算法[J].测绘学报,1998,27(2):119-124. 被引量:35
  • 9Neville S,Dimopoulos N.Wavelet Denoising of Coarsely Quantized Signals[J].IEEE Transactions on Instrumentation and Measurement,2006,55(3):892-901.
  • 10杜浩藩,丛爽.基于MATLAB小波去噪方法的研究[J].计算机仿真,2003,20(7):119-122. 被引量:93

二级参考文献23

  • 1王赤,田茂,周维,聂鑫.探地雷达回波信号预处理方法的研究与应用[J].计算机测量与控制,2005,13(3):259-261. 被引量:9
  • 2陈瑛,罗鹏飞.海杂波背景下基于RBF神经网络的目标检测[J].雷达科学与技术,2005,3(5):271-275. 被引量:8
  • 3D L Donobo. De- nosing by soft- thresholding[J].IEEE Transactions on Information Theory, 1995,41(3) :613 - 627.
  • 4D L Donoho and I M Johnstone. Ideal spacial adaption by wavelet shrinkage[ R]. Technical report, Department of Statistics,Stanford University, 1992.
  • 5K Berkner, Jr R O Wells. Wavelet transforms and denoising algorithm[C]. Signal, System & Computers, Conference Record of the Thirty-Second Asilomar Conference, 1998,(2):1639- 1643.
  • 6D L Donoho, I M Johnstone, G Kerkyacharian and D Picant. Wavelet shrinkage: Asymptopia? [J]. Journal of the Royal Statistical Society,Series B, 1994.
  • 7Shi Zhenghuo,Proc IGARSS’94,1994年,2219页
  • 8海浪实时监测技术报告[R].哈尔滨工程大学和中国科学院海洋研究所,2006.8-15.
  • 9H eiko Dankert, Jochen Horstmann, Wolfgang Rosenthal. Wind and wave field measurements using marine X-band radar-image sequences[J]. IEEE Joural of Oceanic engineering, 2005, 30(3) : 534 - 542.
  • 10Rune Gangeskar. Ocean current estimated from X-band radar sea surface, images[ J]. IEEE Transcations on Geoscience and Remote Sensing, 2002, 40(4): 783- 792.

共引文献150

同被引文献28

引证文献5

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部