期刊文献+

主流无载气N_2-氧碘化学激光配气方式的数值优化 被引量:1

Numerical optimization of jet location in N_2-chemical oxygen iodine laser without primary buffer gas
下载PDF
导出
摘要 针对主流无载气、副流以氮气为载气的氧碘化学激光(COIL),应用求解3维多组分化学反应流方程的数值方法,对流场和物理化学的耦合过程进行细致研究,对副流载气变化带来的问题及性能提升的手段、特别是合理的配气方式进行深入分析。结果表明:传统的在亚声速段进行喷流的配气方式不适用于主流无载气N2-COIL系统,必须采用超声速段射流方式;合理的流量配比条件下,超声速段射流方式COIL光腔位置处增益可达1.5%cm-1;N2-COIL流场边界层厚度明显减小,拓宽了增益的有效分布区域。 3-D Navier-Stocks equation with multi species and chemical reaction process was applied with CFD method on the chemical oxygen iodine laser(COIL) model using nitrogen as diluents gas to investigate the detailed flow field and the coupling between physical and chemical process,especially the appropriate mixing technique.It is found that mixing by jet in the subsonic section is inapplicable to the N2-COIL without primary buffer gas;jet in supersonic is necessary and with the appropriate flow rate ratio,the small signal gain could reach 1.5% cm-1 in the position of cavity;the efficient area of gain is widened since the thickness of boundary layer is reduced as the result of mixture weight increase.
出处 《强激光与粒子束》 EI CAS CSCD 北大核心 2010年第8期1875-1880,共6页 High Power Laser and Particle Beams
关键词 氧碘化学激光 主流无载气 氮气 增益系数 超声速段射流 边界层 chemical oxygen iodine laser without primary buffer gas nitrogen gain jet in supersonic section boundary layer
  • 相关文献

参考文献10

  • 1McDermott W E,Pchelkin N R,Benard D J,et al.An electronic transition chemical laser[J].Appl Phys Lett,1978,32:469-470.
  • 2Yang T T,Bhowmik A,Burde D,et al.20 kW nitrogen diluent chemical oxygen-iodine laser,high-power laser[C] //Proc of SPIE.2002,4760:537-549.
  • 3Furman D,Barmashenko B D,Rosenwaks S.An efficient supersonic chemical oxygen-iodine laser operating without buffer gas and with simple nozzle geometry[J].Appl Phys Lett,1997,70(18):2341-2343.
  • 4房本杰,桑凤亭,陈方,张岳龙,金玉奇,李庆伟.以氮气为载气COIL的设计与实验[J].强激光与粒子束,2003,15(12):1148-1150. 被引量:4
  • 5房本杰,陈方,张岳龙,金玉奇,桑凤亭.以氮气为载气的千瓦级COIL的初步实验研究[J].强激光与粒子束,2002,14(3):447-450. 被引量:6
  • 6吕俊明,胡宗民,王春,姜宗林.氧碘化学激光器超声速段射流工作方式性能的数值研究[J].强激光与粒子束,2009,21(9):1305-1309. 被引量:4
  • 7Madden T J.Aspects of 3-D chemical oxygen-iodine laser simulation[C] //Proc of SPIE.2003,5120:363-375.
  • 8Paschkewtiz J,Shang J,Miller J,et al.An assessment of COIL physical property and chemical kinetic modeling methodologies[R].AIAA Paper-2000-2574,2000.
  • 9Jiang Zonglin,Takayama K,Chen Y S.Dispersion conditions for non-oscillatory shock capturing schemes and its applications[J].Comp Fluid Dynamics Journal,1995,4(2):137-150.
  • 10吕俊明,王春,姜宗林.COIL基于小信号增益系数的最佳流量配比选择[J].强激光与粒子束,2008,20(10):1593-1596. 被引量:4

二级参考文献30

  • 1刘万发,赵彤,徐文刚,王科.碘气流穿透深度和碘流量对COIL激光输出功率的影响[J].强激光与粒子束,2004,16(12):1506-1508. 被引量:3
  • 2胡宗民,孙英英,吴宝根,姜宗林.COIL亚声速段横向喷流混合流场数值分析[J].强激光与粒子束,2005,17(4):481-484. 被引量:5
  • 3袁先旭,陈坚强,邓小刚.化学氧碘激光(COIL)三维混合反应流场数值模拟研究[J].空气动力学学报,2006,24(4):444-449. 被引量:5
  • 4Yang B L. Latest advances in COIL at Dalian[C]//Proc of SPIE. 1998, 3574:281-289.
  • 5Rybalkin V, Katz A, Waichman K, et al. How many O2 molecules are consumed per dissociated I2 in chemical oxygen-iodine lasers[J]. Appl Phys Lett, 2006, 89:021115.
  • 6Madden T J. Aspects oir 3-D chemical oxygen iodine laser simulation[C]//Proc of SPIE. 2003, 5120:363-375.
  • 7Jiang Z L, Takayama K, Chen Y S. Dispersion conditions for non-oscillatory shock capturing schemes and its applications[J]. Comp Fluid Dynamics Journal, 1995, (4):137-150.
  • 8Paschkewtiz J, Shang J, Miller J, et al. An assessment of COIL physical property and chemical kinetic modeling methodologies[R]. AIAA 2000-2574. 2000.
  • 9Yang Bailing. Latest advances in COIL at Dalian[C]//Proc of SPIE. 1998, 3574:281-289.
  • 10Madden T J. Aspects of 3-D chemical oxygen-iodine laser simulation[C]//Proc of SPIE. 2003, 5120:363-375.

共引文献11

同被引文献16

  • 1吴宝根,陆来,姜宗林,陈耀松.用FLUENT软件计算化学氧碘激光流场[J].强激光与粒子束,2005,17(2):181-185. 被引量:11
  • 2陈勇,柳建,李树民,金钢.光在超声速湍流边界层中的传输[J].计算物理,2006,23(2):204-208. 被引量:8
  • 3杜燕贻,束小建,李守先.氧碘化学激光器中相位扰动的模拟研究[J].强激光与粒子束,2006,18(6):903-907. 被引量:4
  • 4张黎,叶正寅,王刚.氧碘化学激光器组分超音速混合反应数值模拟[J].光电工程,2007,34(6):20-24. 被引量:5
  • 5Suzuki M, Matsueda H, Masuda W. Numerical simulation of Q-switched supersonic flow chemical oxygen-iodine laser by solving time de pendent paraxial wave equation[J]. JSME International Journal Series B, 2006, 49(4) : 1212-1219.
  • 6Buggeln R C, Shamroth S, Lampson A I, et al. Three-dimensional(3-D) Navier-Stokes analysis of the mixing and power extraction in a su- personic chemical oxygen iodine laser(COIL) with transverse I2 injection[R]. AIAA Plasmadynamics and Lasers Conference, 1994: 94- 2435.
  • 7Huai Ying, Jia Shuqin, Jin Yuqi. Analysis and optimization of mixing process with large eddy simulation: An application to SCOIL[R]. AIAA Plasmadynamics and Lasers Conference, 2009:2009-4066.
  • 8Sziklas E A, Siegman A E. Mode calculations in unstable resonators with flowing saturable gain. 2, Fast Fourier transform method[J].Appl Opt, 1975, 14(8) : 1874-1889.
  • 9Barmashenko B D. Analysis of lasing in chemical oxygen-iodine lasers with unstable resonators using a geometric optics model[J]. Appl Opt, 2009, 48(13) :2542-2550.
  • 10Kasap S, Capper P. Springer handbook of electronic and photonic materials[M]. New York: Springer Science and Business Media, Inc, 2006.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部