期刊文献+

高阶色散介质的改进移位算子时域有限差分方法 被引量:2

Improved shift operator FDTD method for high order dispersive media
下载PDF
导出
摘要 提出一种适用于高阶Debye,Drude,Lorentz及其混合模型的改进移位算子的时域有限差分(SO-FDTD)方法。从介质极化率函数出发,将其写成一阶或二阶有理分式求和的形式,并在随时间步推进计算的过程中,通过引入中间变量和设置临时变量,克服了常规SO-FDTD将高阶模型直接转化为有理分式所导致的计算复杂性和内存占用量大的问题。同时,改进SO-FDTD方法的时域推进计算步骤具有通用性,克服了常规递归卷积(RC-FDTD)方法对各种高阶模型具有不同计算公式,因而不能形成通用计算程序的问题。最后,通过空气-高阶色散介质界面的反射系数计算验证了算法的有效性和通用性。 An improved shift operator finite-difference time-domain(SO-FDTD) method for the high order Debye,Drude,Lorentz and hybrid model dispersive media is presented.The susceptibility function of dispersive media is firstly represented as the sum of rational fractions.The computational complexity and large storage requirement in the conventional SO-FDTD method for the high order dispersive model is solved by introducing an intermediate variable and setting a temporary variable.Meanwhile,the generality of updated formulation in the improved SO-FDTD method is superior to that of the conventional recursive convolution FDTD(RC-FDTD) method,in which different formulations are required for different dispersive models.Finally,the generality and feasibility of the presented scheme are validated by the calculation of reflection coefficients for high order Debye,high order Lorentz,and Drude-Lorentz hybrid dispersive dielectric slabs.
出处 《强激光与粒子束》 EI CAS CSCD 北大核心 2010年第8期1925-1929,共5页 High Power Laser and Particle Beams
基金 国家自然科学基金项目(60871071)
关键词 色散介质 时域有限差分方法 移位算子 dispersive media finite-difference time-domain method shift operator
  • 相关文献

参考文献12

二级参考文献53

共引文献86

同被引文献18

  • 1Vial A, Laroche T, Dridi M, et al. A new model of dispersion for metals leading to a more accurate modeling of plasmonic structures using the FDTD method[J]. Applied Physics A, 2012, 103(3) : 849-853.
  • 2Pernicel W H P, Paynel F P, Gallagher D F G. An FDTD method for the simulation of dispersive metallic structures[J]. Opticaland Quan turn Electronics, 2007, 38(9/11) : 843-856.
  • 3Vial A, Laroche T. Description of dispersion properties of metals by means of the critical points model and application to the study of reso nant structures using the FDTD method[J]. J Phys D: Appl Phys, 2007, 40: 7152-7158.
  • 4Pernice W H P, Payne F P, Gallagher D F G. A general framework for the finite-difference time-domain simulation of real metals[J]. IEEE Trans on Antennas and Propagation, 2007, 55(3) : 916-923.
  • 5Vial A. Implementation of the critical points model in the recursive convolution method for dispersive media modeling with the FDTD meth- od[J]. JOptA: PureApplOpt, 2007, 9(7): 745-748.
  • 6Kelley D F, Luebbers R J. Piecewise linear recursive convolution for dispersive media using FDTD[J]. IEEE Trans on Antennas and Propa- gation, 1996, 44(6): 792-797.
  • 7Okoniewski M, Mrozowski M, Stuchly M A. Simple treatment of multi-term dispersion in FDTD[J]. IEEEMicrowave and Guided Wave Letters, 1997, 7(5) : 121-123.
  • 8Sulivan D. Z-transform theory and the FDTD method[J]. IEEE Trans on Antennas and Propagation, 1996, 44(1) : 28-34.
  • 9Janke W, Blakiewicz G. Semi analytical recursive algorithms for convolution calculations[J]. IEE Proc Circuits Devices Syst, 1995, 142 (2): 125- 130.
  • 10Zhang Yuqiang, Ge Debiao. A unified FDTD approach for electromagnetic analysis of dispersive objects[J]. Progress in Electromagnetics Research, 2009, 96: 155 -172.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部