期刊文献+

新颖的余数系统到二进制系统转换方法 被引量:1

New Method for Residue-to-Binary Conversion
下载PDF
导出
摘要 传统的余数系统(RNS)到二进制系统(R/B)转换电路中的大位宽操作削弱了RNS的并行特性。针对这一问题,提出了基于数值缩放(Scaling)的R/B转换算法和余数系统2k缩放并行实现的方法。同常见余数基R/B转换算法的比较分析结果表明,所提出的算法使R/B转换中的最大运算位宽限制在最大余数基位宽内,从而消除了R/B转换中可能带来的系统并行度损失;此外,该转换算法可实现有符号RNS到二进制补码系统(TCS)的转换,且不限于具体余数基形式,具有一定的通用性。 The operations with large bit-width in residue to binary (R/B) conversion impairs the parallelism degree of residue number system (RNS). In this paper an scaling based R/B conversion algorithm and an RNS power of two scaling method are proposed. The analysis results show that the operation bit-width in the proposed R/B conversion is smaller than the maximum bit-width of radix in moduli set. Furthermore, the conversion results can be mapped into Tow's complement system (TCS) directly with arbitrary moduli set. As a result, the proposed R/B conversion algorithm can reduce the critical path in very large scale Integration (VLSI) circuits and improve the performance of VLSI.
作者 马上 胡剑浩
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2010年第4期517-522,共6页 Journal of University of Electronic Science and Technology of China
基金 国家自然科学基金(60873076)
关键词 数字运算 余数系统到二进制系统转换 余数系统 数值缩放 超大规模集成电路 digital arithmetic R/B conversion RNS scaling VLSI circuits
  • 相关文献

参考文献12

  • 1WILLIAM J D, STEVE L. VLSI architecture: past, present, and future[C]//Proceedings of the 20th Anniversary Conference on Advanced Research in VLSI. Atlanta: IEEE Press, 1999: 232-241.
  • 2ADREAS L, LARS B. A low-power FIR filter using combined residue and Radix-2 signed-digit representation [C]//Proceedings of the 2005 8th Euromicro conference on Digital System Design. Porto, Portugal: IEEE Press, 2005: 42-47.
  • 3马上,胡剑浩,叶燕龙.以{2^n-1,2^n,2^n+1}为基的余数系统2^n高性能缩放[J].电子科技大学学报,2010,39(2):306-310. 被引量:2
  • 4GALLAHER D, PETRY E Padmini Srinivasan. The digital parallel method for fast RNS to weighted number system conversion for specific moduli (2^n -1,2^n,2^n +1)[J]. IEEE Transactions on Circuits and Systems-II, 1997, 44(1): 53-57.
  • 5WANG Wei, SWAMY M N S, AHMAD M O, et al. A high-speed residue-to-binary converters for three-moduli (2^k,2^k-1, 2^k-1-1) RNS and a scheme for its VLSI implemtation[J]. IEEE Transactions on Circuits and Systems-II: Analog and Digital Signal Processing, 2000, 47(2): 1576-1581.
  • 6MOHAN P V A, PREMKUNMAR A B. RNS-to-binary converters for two four-moduli sets {2^n -1,2^n,2^n +1, 2^n+1- 1} and {2^n- 1,2^n,2n +1,2^n-1 - 1} [J]. IEEE Transactions on Circuits and Systems-l: Regular Papers, 2007, 54(6): 1245-1254.
  • 7CAO B, SRIKANTHAN T, CHANG C H. Design of residue-to-binary converter for a new 5-moduli superset residue number system[J]. IEEE Transactions on Circuits and Systems-I: Regular Papers, 2007, 54(5): 1041-1049.
  • 8WANG Wei, SWAMY M N S, AHMAD M O, et al. A parallel residue-to-binary converter for the moduli {2^m-1,2^20m+1,2^2^1m+1,…,2^2^km+1} [J]. VLSI Design, 2002, 14(2): 183-191.
  • 9UWE M B, THANOS S. New power-of-2 RNS sealing scheme for cell-based IC design[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2003, 11 (2) : 280-283.
  • 10CARDARILLI G C, DEL RE A, NANNARELLI A. Programmable power-of-two RNS scaler and its application to a QRNS polyphase filter[C]//IEEE International Symposium on Circuits and Systems. Kobe, Japan: IEEE Press, 2005:1102-1105.

二级参考文献18

  • 1WILLIAM J D, STEVE L. VLSI architecture: past, present, and future[C]//Proceedings of the 20th Anniversary Conference on Advanced Research in VLS1. Atlanta, GA, USA: IEEE Press, 1999: 232-241.
  • 2ADREAS L, LARS B. A low-power FIR filter using combined residue and radix-2 signed-digit representation [C]//Proceedings of the 8th Euromicro conference on Digital System Design. Porto, Portugal: IEEE Press, 2005: 42-47.
  • 3MA Shang, HU Jian-hao, Zhang Lin, et al. An efficient 2^n RNS scaler and its VLSI implementation[C]//2008 international conference on communications, circuits and systems. Chengdu, China: IEEE Press, 2008: 1498-1501.
  • 4JULLIEN G A. Residue number scaling and other operations using ROM arrays[J]. IEEE Transactions on Computers, 1978, c-27(4): 325-336.
  • 5SHENOY M A P, KUMARESAN R. A fast and accurate RNS scaling technique for high speed signal processing[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1989, 37(6): 929-937.
  • 6BARSI F, PINOTTI M C. Fast base extension and precise scaling in RNS for look-up table implementations[J]. IEEE Transactions on Signal Processing, 1995, 43(10): 2427-2430.
  • 7ANTONIO G; ANTONIO L. RNS scaling based on pipelined multipliers for prime moduli[C]//IEEE Workshop on Signal Processing Systems. Cambridge, MA, USA: IEEE Press, 1998: 459-468.
  • 8ANTONIO G, ANTONIO L. A look-up scheme for scaling in the RNS[J]. IEEE Transactions on Computers, 1999, 48(7): 748-751.
  • 9SOUDRIS D, DASYGENIS M, MITROGLOU K D, et al. A full adder based methodology for scaling operation in residue number system[C]//Proceedings of 9th International Conference on Electronics, Circuits and Systems. Dubrovnik, Croatia: IEEE Press, 2002: 891-894.
  • 10NEIL B. Scaling an RNS number using the core function[C]//Proceedings of 16th IEEE Symposium on Computer Arithmetic. Santiago de Compostela, Spain: IEEE Press, 2003: 262-269.

共引文献1

同被引文献5

  • 1程培青.数字信号处理教程[M].北京:清华大学出版社,2007.
  • 2Soderstrand M A. Residue number system arithmetic: modern applications in digital signal processing[M]. California: IEEE Press, 1986.
  • 3Ashur A S,Ibrahim M K,Aggoun A. Novel RNS structures for the moduli set (2^n-1,2^n,2^n+1) and their application to digital filter implementation[J]. Signal Processing, 1995,46 ( 1995 ):331-343.
  • 4Liu Y,Lai E M K. Moduli set selection and cost estimation for RNS-Based FIR filter and filter bank design [J]. Design Automation for Embedded Systems, 2004 (9): 123-139.
  • 5Omondi A,Premkumar B. Residue number systerms: theory and implementation[M]. London: Imperial College Press,2007: 9-10.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部