期刊文献+

基于S-D分配的集中式多传感器不敏滤波算法

Centralized Multisensor Unscented Filter Algorithm Based on S-D Assignment
下载PDF
导出
摘要 研究了非线性环境中的集中式多传感器多目标跟踪问题,提出了一种基于S-D分配的集中式多传感器不敏滤波算法。算法通过广义S-D分配技术实现每个传感器中的量测与目标的数据关联,求得所有可能互联中的最佳划分,然后按照顺序多传感器联合概率数据互联算法,依次处理最佳划分中各传感器源于同一目标的量测,在此基础上通过不敏卡尔曼滤波(UKF)解决非线性系统中的目标跟踪问题。最后给出了该算法与MSJPDA/EKF算法的仿真比较,结果表明该算法具有更高的稳定性和跟踪精度。 For the problem of multisensor-multitarget tracking in nonlinear system, a novel centralized multisensor unscented filter algorithm based on S-D assignment, SD-CMSUKF, is proposed. In the new algorithm, the association of measurements from each sensor to targets is first implemented according to the generalized S-D assignment technique and the optimal partition can be achieved. Then in the optimal partition, the measurements from the same target are dealt with sequentially in terms of the principle of sequential multisensor joint probabilistic data association algorithm (MSJPDA). Based on these, UKF is used for the propagation of state distribution in nonlinear system and the SD-CMSUKF algorithm is derived. Compared with the MSJPDA/EKF, the accuracy and robustness of the proposed algorithm are improved. Simulation results show the superiority of the new algorithm.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2010年第4期542-545,539,共5页 Journal of University of Electronic Science and Technology of China
基金 国家自然科学基金(60572161)
关键词 多传感器多目标跟踪 非线性 S-D分配 不敏卡尔曼滤波 multisensor multitarget tracking nonlinearity S-D assignment UKF
  • 相关文献

参考文献6

  • 1BAR S Y. Multitarget-multisensor tracking: advanced applications[M]. Norwood MA: Artech House, 1990.
  • 2BLACKMAN S S. Multiple hypothesis tracking for multiple target tracking[J]. IEEE Transaction on Aerospace and Electronic Systems Magazine, 2004, 19(1): 5-18.
  • 3耿文东,刘红娅,王元钦,蔡庆宇.基于群目标的多目标关联算法研究[J].系统仿真学报,2007,19(15):3510-3512. 被引量:7
  • 4BAR-SHALOM Y, FORTMA_NN T E. Tracking and data association [M]. New York: Academic Press, 1988.
  • 5熊伟 ,张晶炜 ,何友 .修正的概率数据互联算法[J].海军航空工程学院学报,2004,19(3):309-311. 被引量:11
  • 6PAO L Y, FREI C W. A comparison of parallel and sequential implementation of a multisensor multitarget tracking algorithra[C]//Proc 1995 American Control Conf. Seattie: IEEE, 1995.

二级参考文献17

  • 1沈宁,何友,王国宏.一种改进的精确最近邻PDA(IENNPDA)算法[J].现代雷达,1996,18(2):8-13. 被引量:6
  • 2牛君,李贻斌.一种基于BFGS拟牛顿公式的运动目标跟踪方法[J].系统仿真学报,2007,19(1):13-15. 被引量:2
  • 3何友 等.多传感器信息融合中的分层估计[J].海军航空工程学院学报,1999,(2):101-107.
  • 4[2]Bar-shalom Y,Fortmann T E. Tracking and Data Association [M].New York:Academic press,1988
  • 5[4]Yaakov Bar-Shalom.Multitarget-Multisensor Tracking,Advanced Application[M].University of Connecticut,Artech House,1990:1-23
  • 6[5]Kirubarajan T,Bar-Shalom Y.IMM PDA for Radar Mangement and Tracking Benchmark with ECM[J].IEEE Transactions on Aerospace and Electronics, 1998:1115-1132
  • 7[6]Munir A,et al.Adaptive interacting multiple model algorithm for tracking a maneuvering target[J].IEEE Proc-F,1995,142(1):11-16
  • 8[7]Fortmann T E,Bar-Shalom Y,Scheffe M,Gelfand S.,Detection Thresholds for Multitarget Tracking in Clutter[A].//Proc.20th IEEE Conf.on Decision &Control[C].San Diego,CA,1981
  • 9[9]Birmiwal K,Bar-Shalom Y.Maneuver Target Tracking a Cluttered Environment with a Variable Dimension Filter [J].IEEE Trans.Aerospace & Electronic System,Vol.AES-20,September 1984:635-645
  • 10[10]Blom H A P.A Sophisticated Tracking Algorithm for ATC Surveillance Data[A].//Proc.International Radar Conf.[C].Paris,France,1984

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部