期刊文献+

一种基于AR模型的非线性盲源提取方法及其应用

An AR parameters-based source selection method in general nonlinear blind source extraction
原文传递
导出
摘要 针对非线性盲源分离中非线性问题转化为线性问题,提出了一种基于AR模型的新方法。该方法在已知源信号的AR模型前提下,不但能够处理源信号的分离问题,还能够提取特定源信号,而后者是原来方法不具备的。从语音信号的非线性混合中提取源信号的仿真实验证实了该算法的有效性。 In the nonlinear blind source separation(BSS)case,an AR parameters method was introduced as a new selection procedure.Compared with previous methods,the proposed algorithm can not only do the separation,but also extract any desired signal with the corresponding AR parameter.It could deal with nonlinear blind source extraction(BSE)at the cost of more prior information,and its performance was demonstrated on nonlinearly mixed speech data.
作者 蔡英 王刚
出处 《山东大学学报(工学版)》 CAS 北大核心 2010年第5期17-23,共7页 Journal of Shandong University(Engineering Science)
基金 国家自然科学基金资助项目(30900318)
关键词 非线性盲源分离 非线性盲源提取 均方预测误差 协预测误差 AR模型 nonlinear blind source extraction nonlinear blind source extraction mean square prediction error(MSPE) mean cross prediction error(MCPE) AR parameter
  • 相关文献

参考文献16

  • 1HYVARINEN A, KARHUNEN J, OJA E. Indepedent component analysis [ M ]. New York: Jonh Wiley & Sons Inc, 2003.
  • 2HYVARINEN A, PAJUNEN P. Nonlinear independent component analysis: existence and uniqueness results[ J]. Neural Networks, 1999, 12(3):429-439.
  • 3BLASCHKE T, ZITO T, WlSKOTr L. Independent slow feature analysis and nonlinear blind source separation [ J ]. Neural Computation, 2007, 19:994-1021.
  • 4HARMELING S, ZIEHE A, KAWANABE M, et al. Kernel-based nonlinear blind source separation E J ]. Neural Computation, 2003, 15:1089-1124.
  • 5JUTTEN C, KARHUNEN J. Advances in nonlinear blind source separation[ C]//Proceedings of the 4th Int. Symposium on Independent Component Analysis and Blind Signal Separation (ICA 2003). [ S.l ] : [ s. n. ]. 2003: 245-256.
  • 6ALMEIDA L. Linear and nonlinear ICA based on mutual information-the MISEP method [ J ]. Signal Processing, 2004, 84 (2) :231-245.
  • 7YANG H H, AMARI S, CICHOCKI A. Information-theoretic approach to blind separation of sources in non-linear mixture [J]. Signal Processing, 1998, 64(3) :291-300.
  • 8TALEB A, JUTTEN C. Source separation in post-nonlinear mixtures[J]. IEEE Transactions on Signal Processing, 1999, 47 (10) : 2807 -2820.
  • 9ZIEHE A, KAWANABE M, HARMELING S, et al. Blind separation of post-nonlinear mixtures using linearizing transformations and temporal decorrelation[ J]. Journal of Machine Learning Research, 2003, 4:1319-1338.
  • 10CICHOCKI A, AMARI S. Adaptive blind signal and image processing [ M ]. New York: Jonh Wiley & Sons Inc, 2003.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部