期刊文献+

融合PSO算法思想的进化算法 被引量:1

Evolutionary algorithm based on the idea of particle swarm optimization
原文传递
导出
摘要 粒子群算法(particle swarm optimization,PSO)是仿真于生物群体的社会行为的一种智能优化算法,其原始形式难以体现数学的直观性和本质性。然而,在简化算法原始模型的基础上,PSO算法的理论分析得到其数学模型,并且说明了其是一个迭代进化系统。利用PSO算法的数学模型代替标准PSO算法速度及位置的迭代公式,并选择适当的参数,从而构造了一种新的进化算法。新的进化算法形式更能直接体现PSO算法的数学思想。经仿真试验表明,新的进化算法效果不差于标准PSO算法,并且参数少且容易分析。 Particle swarm optimization(PSO)is an intelligence algorithm simulating the social behavior of a bird swarm or fish group.It is difficult for the original formula of PSO to show mathematical essence and principle.Using the simplified modal of PSO,the current theoretical analysis of PSO constructed a mathematical modal giving a clear essence of PSO from a mathematical view,this illustrated that the PSO was an iteration evolutionary system.Using the mathematical modal of PSO,a new evolutionary algorithm in which the velocity and location updating equation of PSO were replaced by the mathematical equations were developed.Some parameters of the new algorithm were discussed and properly selected.With selection of appropriate parameters,the performance of new evolutionary algorithm was not inferior to the standard PSO by simulation on benchmark functions.The new evolutionary algorithm was easy to understand and had mathematical meaning.Its parameters were fewer and easier to be analyzed than the standard PSO.
出处 《山东大学学报(工学版)》 CAS 北大核心 2010年第5期34-40,共7页 Journal of Shandong University(Engineering Science)
基金 福建省自然科学基金资助项目(2008J04004)
关键词 粒子群算法 收敛性 进化算法 数学模型 particle swarm optimization convergence evolutionary algorithm mathematic modal
  • 相关文献

参考文献12

  • 1EBERHART R C, KENNEDY J. A new optimizer using particle swarm theory [ C ]//The 6^th International Symposium on Micro Machine and Human Science. Nagoya, Japan: IEEE Service Center, 1995: 78-79.
  • 2KENNEDY J, EBERHART R C. Particle swarm optimization[ C ]// Proceedings IEEE International Conferenceon Neural Networks. Piscataway, NJ: IEEE Service Center, 1995 : 1942-1948.
  • 3SHI Y, EBERHART R C. A modified particle swarm optimizer[ C]// Proceedings of the IEEE International Conference on Evolutionary Computation. Piscataway, NJ: IEEE Computer Society Press, 1998: 69-73.
  • 4OZCAN E, MOHAN C. Particle swarm optimization: surfing the waves[ C]//Proceedings of 1999 Congress on Evolutionay Computation. Piscataway, NJ: IEEE Computer Society Press, 1999. 1939-1944.
  • 5OZCAN E, MHOAN C. Analysis of a simple particle swarm optimization system [ J ]. Intelligent Engineering Systems Through Artifical Neural Networks, 1998, 8: 253 -258.
  • 6BRITS R, ENGELHRECHT A P, FAN ven den bergh. Locating multiple optimal using partilce swarm optimization[ J ]. Applied Mathematics and Computation, 2007, 189 : 1859-1883.
  • 7JACO F S, ALBERT A G. A study of global optimization using particle swarms[ J]. Journal of Global Optimization, 2005, 31:93-108.
  • 8VAN B F, ENGELBERCHT A P. A study of particle swarm optimization particle trajectories [ J ]. Information Sciences, 2006, 176(8) : 937-971.
  • 9CLERC M, KENNEDY J. The particle swarm-explosion, stability and convergence in multidimesional complex space[ J ]. IEEE Transaction on Evolutionary Computation, 2002, 6(1): 58-73.
  • 10TRELEA I C. The particle swarm optimization algorithms: convergence analysis and parameter selecion [J]. Information Processing Letters, 2003, 8(5) : 317- 325.

同被引文献18

  • 1De CASTRO L N, Von ZUBEN F J. Learning and optimization using the clonal selection principle[J].IEEE Transactions on Evolutionary Computation, 2002, 6 (3) : 239-250.
  • 2PAKH1RA M K, BANDYOPADHYAY A, MAULIK U. Validity index for crisp and fuzzy clustering [J]. Pattern Recognition, 2004, 37(3) : 487-501.
  • 3FERREIRA C. Gene expression programming: a new adaptive algorithm for solving problems[J].Complex Systems, 2001, 13(2) :87-129.
  • 4TSENG L, YANG S. A genetic approach to the automatic clustering problem[J]. Pattern Recognition, 2001, 34 (2) :415-424.
  • 5UJJWAL M, SANGHAMITRA B. Genetic algodthm- based clustering technique [ J ]. Pattern Recognition, 2000, 33(9) :1455-1465.
  • 6LIANG J J, QIN A K. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions [J].IEEE Trans on Evolutionary Computation, 2006, 10(3) :281-295.
  • 7MAULIK U, BANDYOPADHYAY S. Performance evaluation of some clustering algorithms and validity indi- ces ~ J ]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2002, 24(12) : 1650-1654.
  • 8吕艳萍,李绍滋,陈水利,郭文忠,周昌乐.自适应扩散混合变异机制微粒群算法[J].软件学报,2007,18(11):2740-2751. 被引量:50
  • 9张旭,郭晨.基于克隆选择的快速动态聚类算法[J].计算机工程,2007,33(23):16-18. 被引量:2
  • 10公茂果,焦李成,马文萍,张向荣.基于流形距离的人工免疫无监督分类与识别算法[J].自动化学报,2008,34(3):367-375. 被引量:30

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部