期刊文献+

OPHCLUS:基于序关系保持的层次聚类算法 被引量:1

OPHCLUS:an order-preserving based hierarchical clustering algorithm
原文传递
导出
摘要 引入序关系保持的思想,即层次聚类的簇间距离度量应该能够最大限度地维护样本点间的原始距离排序关系。定义了样本点对序关系的概念和序关系损失度量,证明了序关系损失度量可用做聚类的目标准则函数和聚类结果质量的评价标准。利用序关系损失的概念扩展出两种簇间距离度量,实现了基于序关系保持的层次聚类算法(order-preserving based hierarchical clustering algorithm,OPHCLUS)。实验仿真证明了OPHCLUS对聚类质量提升的有效性。 The idea of maintaining order relation was proposed,i.e.,the original order of distance between samples should be preserved by the inter-cluster measurement of hierarchical clustering as far as possible.Based on this idea,the notion of order relation of sample's pair and the loss measurement of order relation was defined,which could be used as the objective criteria function of clustering and the validity standard of consequent clusters.Furthermore,two kinds of distance measurement from the loss of order relation were extended,i.e.,inter-cluster adjusted distance and inter-cluster 0-1 weighted distance,and an order-preserving based hierarchical clustering algorithm was implemented by using these two measurements.Experimental simulation demonstrated the improvement in the clustering quality.
出处 《山东大学学报(工学版)》 CAS 北大核心 2010年第5期48-55,共8页 Journal of Shandong University(Engineering Science)
基金 国家高技术研究发展计划(863计划)资助项目(2006AA12Z217) 中国矿业大学科技基金资助项目(OD080313)
关键词 层次聚类算法 序关系保持 簇间修正距离 簇间0-1加权距离 hierarchical clustering algorithm maintaince of order relation inter-cluster adjusted distance inter-cluster 0-1 weighted distance
  • 相关文献

参考文献10

  • 1HAN J W, KAMBER M. Data mining: concepts and techniques[M]. San Francisco, CA, USA: Morgan Kaufmann Publishers, 2001: 223-250.
  • 2VARSHAVSKY R, HORN D, LINIAL M. Global considerations in hierarchical clustering reveal meaningful patterns in data [J]. PLoS ONE, 2008, 3(5) : 2247.
  • 3孙吉贵,刘杰,赵连宇.聚类算法研究[J].软件学报,2008(1):48-61. 被引量:1070
  • 4Mark Sh Levin. Towards hierarchical clustering[ J ]. Lecture Notes in Computer Science, 2007 (4649) :205-215.
  • 5STEINLEY D, HUBERT L. Order-constrained solutions in k-means clustering: even better than being globally optimal [ J ]. Journal of Psychometrika, 2008, 73 (4) :647-664.
  • 6BATYRSHIN, RUDAS T. Invariant hierarchical clustering schemes [ J ].Studies in Computational Intelligence, 2007 ( 36 ) : 181-206.
  • 7JOSELITO J CHUA, PETER E. TISCHER. Hierarchical ordering for approximate similarity ranking [ C ]//Proceedings of the 14th International Symposium on Methodologies for Intelligent Systems ( ISMIS 2003 ). Maebashi, Japan: Springer, 2003 : 496 -500.
  • 8GASCUEL O, MCKENZIE A. Performance analysis of hierarchical clustering algorithms [ J ]. Journal of Classification, 2004, 21(1) :3-18.
  • 9ASUNCION A, NEWMAN D J. UCI machine learning repository [ EB/OL ]. [ 2007-10-12 ]. http ://www. ics. uci. edu/- mlearn/MLRepository, html.
  • 10STEINBACH M, KARYPIS G. , KUMAR V A. Comparison of document clustering techniques[ C]//Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2000). New York, NY, USA: Association for Computing Machinery, 2000.

二级参考文献1

共引文献1069

同被引文献13

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部