摘要
所谓一个格具有Σ-core紧性(ΣF-core紧性),是指在赋以scot拓扑(scot开滤子拓扑)之后,这个格作为拓扑空间是core紧的.本文证明了若ΣF(L)为序相容拓扑空间,则L具有ΣF-core紧性当且仅当L为连续格.
A lattice is Σ core compact (ΣF core compact) if it is core compact as a topological space after it is endowed with Scott topology (Scott open filter topology).It′s proved that if ΣF( L ) is order consistent topological space,then L is ΣF core compact if and only if L is continuous lattice.Thus the main result in is generalized.
出处
《辽宁师范大学学报(自然科学版)》
CAS
1999年第1期10-12,共3页
Journal of Liaoning Normal University:Natural Science Edition