期刊文献+

广义拟变分不等式的灵敏性分析 被引量:3

SENSITIVITY ANALYSIS FOR GENERALIZED MULTI ACLUED QUSI VARIATIONAL INEQUALITIES
下载PDF
导出
摘要 通过投影方法及不动点技巧,研究了广义拟变分不等式的灵敏性分析.所得结果是新的。 This paper studies the sensitivity analysis of generalized multivalued qusi variational inequalities by using the projective method and the fixed point techinque. The present results are new, and improve and generalized many known results.
作者 胡润雪
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 1999年第1期53-58,共6页 Journal of Sichuan Normal University(Natural Science)
关键词 广义 拟变分不等式 灵敏性 单值映射 Generalized multivalued parameter quasi variational inequality Hausdorff metric θ contractive mapping Sensitivity analysis
  • 相关文献

参考文献9

  • 1Pan Y H.-[J].Sichuan Normal Univ(Natural Science),1996,19(2):56-59.
  • 2Luo C L.-[J].Sichuan Normal Univ(Natural Science),1997,20(6):11-16.
  • 3Hu R X.Sensitity analysis for general quasi-varnational inequalities[J].Sichuan Normal Univ(Natural Science),1998,21(6):628-632.
  • 4Ding X P,J Optim Theory Appl,1999年,100卷,1期,195页
  • 5Hu R X,四川师范大学学报,1998年,21卷,6期,628页
  • 6Yen N D,J Math Anal Appl,1997年,215卷,48页
  • 7Luo C L,四川师范大学学报,1997年,20卷,6期,11页
  • 8Pan Y H,四川师范大学学报,1996年,19卷,2期,56页
  • 9Ding X P,Indian J Pure Appl Math,1994年,25卷,1115页

同被引文献24

  • 1郑莲,张清邦,胡本琼.用扰动逼近算法解广义混合拟似变分不等式组[J].四川师范大学学报(自然科学版),2004,27(6):569-573. 被引量:5
  • 2Noor M A. Generalized set-valued variational inclusions and resolvent equations[J]. Math Anal Appl,1998,220:206-220.
  • 3Ding X P. Generalized implicit quasivariational inclusions with Fuzzy set-valued mapping[J]. Comput Math Appl,1999,38:71-79.
  • 4Ding X P. Generalized quasi-variational-like inclusions with Fuzzy mapping and nonconvex functionals[J]. Adv Nonlinear Var Inequal,1999,2(2):13-29.
  • 5Ding X P, Park J Y. A new class of generalized nonlinear implicit quasivariational inclusions with Fuzzy mapping[J]. Comput and Appl Math,2002,138:243-257.
  • 6Ding X P. Algorithms of solutions for completely generalized mixed implicit quasi-variational inclusions[J]. Appl Math Comput,2003,148(1):47-66.
  • 7Liu L W, Li Y Q. On generalized set-valued variational inclusions[J]. Math Anal Appl,2001,261:231-240.
  • 8Fang Y P, Huang N J. H-Monotone operator and resolvent operator technique for variational inclusions[J]. Appl Math and Comput,2003,145:795-803.
  • 9Nadler S B. Mutivalued Contraction mapping[J]. Pacific J Math,1969,30(3):457-488.
  • 10Jerzy Kyparisis.Sensitivity analysis for variational inequalities and nonlinear complementarity problems[J]. Annals of Operations Research . 1990 (1)

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部