摘要
A new geo-acoustic model for gas-bearing sediment is proposed based on the work of Dvorkin and Prasad, and Biot theory. Only five geophysical parameters: sediment mineral composition, free gas saturation, tortuosity (also known as the structure factor), permeability, and porosity, are considered in the model. A benefit of this model is that we need only five parameters instead of ten parameters in the Blot' s formulas for acoustic velocity and attenuation calculation. Here the model is demonstrated with the in-situ experimental data collected from the Hangzhou Bay, China. The results of this study suggest that free gas content in sediment is the most critical condition resulting in a low acoustic velocity (compressional wave). The respective contributions of the other four parameters in the model are also discussed.
A new geo-acoustic model for gas-bearing sediment is proposed based on the work of Dvorkin and Prasad, and Biot theory. Only five geophysical parameters: sediment mineral composition, free gas saturation, tortuosity (also known as the structure factor), permeability, and porosity, are considered in the model. A benefit of this model is that we need only five parameters instead of ten parameters in the Blot' s formulas for acoustic velocity and attenuation calculation. Here the model is demonstrated with the in-situ experimental data collected from the Hangzhou Bay, China. The results of this study suggest that free gas content in sediment is the most critical condition resulting in a low acoustic velocity (compressional wave). The respective contributions of the other four parameters in the model are also discussed.
基金
supported by the National Natural Science Foundation of China(Grant No.40776038)
the Open Fund of Key Laboratory of Geo-detection(China University of Geosciences,Beijing)
Ministry of Education(Grant No.GDL0802)
the Ocean Public Welfare Scientific Research Special Appropriation Project(Grant Nos.200805079and200805005)
the Open Fund of Key Laboratory of Submarine Geoscience,State Oceanic Administration(Grant No.KCSG0803)