期刊文献+

基于GA与SVM的混合算法在电能质量扰动分类问题中的应用 被引量:3

Application of GA and SVM based hybrid algorithm for the classification of power-quality disturbances
下载PDF
导出
摘要 本文针对电能质量扰动分类问题,提出了一种基于GA与SVM的混合算法。首先用小波变换技术对电信号进行特征提取,然后设计出一种遗传算法对提取出的特征进行筛选,最后把筛选后的特征提交给支撑向量机,并由支撑向量机进行分类。数值模拟实验验证了该方法的有效性。 For the classification of power quality disturbances, we present a GA and SVM based hybrid algorithm. Firstly, a wavelet transform technique is used for feature extraction. Then a genetic algorithm is proposed for feature selection. The support vector machine technique is used for classification of selected features. Numerical experiments validate the effectiveness of the proposed algorithm.
作者 孙亮 梁艳春
出处 《中国科技论文在线》 CAS 2009年第2期130-134,共5页
基金 国家自然科学基金项目(60673023 10872077) 高等学校博士学科点专项科研基金项目(20070183055) 国家高技术研究发展计划项目(2007AA04Z114) 广东省教育部产学研合作项目(2007B090400031) 吉林省科技发展项目(20080708)
关键词 电能质量扰动 小波变换 遗传算法 支撑向量机 power quality disturbance wavelet transform genetic algorithm support vector machine
  • 相关文献

参考文献7

  • 1DUGAN RC,MCGRANAGHAN M F,BEATY H W.Electrical power system quality[]..1995
  • 2JANIK P,LOBOS T,SCHEGNER P.Classification of power quality events using SVM networks[].Proc th Inst Elect Eng Int Conf Developments in Power System Protection.2004
  • 3MISHRA S,BHENDE C N,PANIGRAHI B K.Detection and classification of power quality disturbances using s-transform and probabilistic neural network[].IEEE Transactions on Power Delivery.2008
  • 4S.Santoso,E. J. Powers,and W. Grady.Power quality disturbance identification using wavelet Transformers and artificial neutral network.The 1996 International Conference on Harmonic and Quality of Power, Las Vegas, NV, U[].SA.1996
  • 5Gaing Z L.Wavelet-based neural network for power disturbance recognition and classification[].IEEE Transactions on Power Delivery.2004
  • 6He,H.B.,Starzyk,J.A.A self-organizing learning array system for power quality classification based on wavelet transform[].IEEE Transactions on Power Delivery.2006
  • 7Janik P,Lobos T.Automated classification of power-quality disturbances using SVM and RBF networks[].IEEE Transactions on Power Delivery.2006

同被引文献32

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部