摘要
最近Ando等证明了在一个k(k≥5是一个整数)连通图G中,如果δ(G)≥k+1,并且G中既不含K_5^-,也不含5K_1+P_3,则G中含有一条k可收缩边.对此进行了推广,证明了在一个k连通图G中,如果δ(G)≥k+1,并且G中既不含K_2+([k-1/2]K_1∪P_3),也不含tK_1+P_3(k,t都是整数,且t≥3),则当k≥4t-7时,G中含有一条k可收缩边.
Recently,Ando et al.proved that in a k-(k≥5 is an integer) connected graph G,ifδ(G)≥k + 1,and G contains neither K_5^-,nor 5K_1 + P_3,then G has a k contractible edge.In this paper,the result is generalized,and it is proved that in a k- conneted graph G, ifδ(G)≥k + 1,and G contains neither K_2 +([(k-1)/2]K_1∪P_3),nor tK_1 + P_3(both k and t are integers,and t≥3) and if k≥4t- 7,then G has a fc contractible edge.
出处
《系统科学与数学》
CSCD
北大核心
2010年第7期922-928,共7页
Journal of Systems Science and Mathematical Sciences
关键词
断片
可收缩边
k连通图
Fragments
contractible edge
k connected graph.