摘要
摘要Garey和Johnson证明了确定图的交叉数是一个NP-完全问题.确定了笛卡尔积图K_(2,4)×S_n的交叉数是Z(6,n)+4n.当m≥5,猜想cr(K_(2,m)×S_n)=cr(K_(2,m,n))+n[m/2][m-1/2].
Garey and Johnson proved that the problem of determining the crossing number of an arbitrary graph is NP-complete.In this paper,it is proved that the crossing number of the Cartesian product K2,4)×Sn is Z(6,n) + 4n.For m≥5,we conjecture that CT(K2,m)×Sn) = cr(K2,m,n) +n[m/^2][m-1/2].
出处
《系统科学与数学》
CSCD
北大核心
2010年第7期929-935,共7页
Journal of Systems Science and Mathematical Sciences
基金
国家自然科学基金(10771062)资助课题
关键词
交叉数
完全二部图
笛卡尔积图
Crossing number
complete bipartite graph
cartesian product.