期刊文献+

基于多重工作休假的成批到达离散时间排队的性能分析 被引量:1

ANALYSIS BASED ON DISCRETE TIME BULK INPUT QUEUE WITH MULTIPLE WORKING VACATIONS
原文传递
导出
摘要 研究了一个成批到达的离散时间Geom^([X])/Geom/1多重工作休假排队.首先,建立了模型的二维马尔可夫链,利用矩阵分析的方法,导出了稳态队长复杂的概率母函数.其次,为了展示此模型与经典无休假Geom^([X])/Geom/1排队的联系,给出稳态队长的随机分解结果.尤其重要的是,发现了条件负二项分布的双参数加法定理,利用这些结论,得到了矩母函数序下的稳态等待时间的上下界.进一步,求出了平均队长和平均等待时间的上下界.最后,提出一些数值例子以验证结论. This paper is concerned with a bulk input Geom^[X]/Geom/l queue with multiple working vacations.Firstly a two-dimensional Markov chain model is established,and with the matrix analysis method,highly complicated PGF of the stationary queue size is derived, from which the stochastic decomposition result for the PGF of the stationary queue size is obtained,which indicates the evident relationship with that of the classical Geom^[X]/Geom/l queue without vacation.The biparameter addition theorems for the conditional negative binomial distribution is established,with which the upper bound and the lower bound of the stationary waiting time is given in the moment generating function order.Furthermore,the mean queue size,the upper bound and the lower bound of the mean waiting time are obtained. Finally,some numerical examples are presented.
机构地区 燕山大学理学院
出处 《系统科学与数学》 CSCD 北大核心 2010年第7期947-957,共11页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金(10671170) 河北省自然科学基金(F2008000864)资助课题
关键词 Geom^[x]/Geom/1排队 成批到达 多重工作休假 随机分解 矩母函数序 Geom^[X]/Geom/l queue bulk input multiple working vacations stochastic decomposition the moment generating function order.
  • 相关文献

参考文献12

  • 1Doshi B T.Queueing systems with vacations-A survey.Queueing Systems,1986,1:29-66.
  • 2Takagi H.Queueing Analysis,A Foundation of Performance Evaluation.Vacation and Priority Systems.Amsterdam:Elsevier Science Publishers,1991.
  • 3Tian N,Zhang Z G.Vacation Queueing Models-Theory and Applications.New York:SpringerVerlag,2006.
  • 4Servi L D,Finn S G.M/M/1 queue with working vacations(M/M/1/WV).Performance Evaluation,2002,50:41-52.
  • 5Kim J D,Choi D W and Chae K C.Analysis of queue-length distribution of the M/G/1 queue with working vacations.International Conference on Statistics and Related Fields,Hawaii,2003.
  • 6Wu D,Takagi H.M/G/1 queue with multiple working vacation.Performance Evaluation,2006,63:654-681.
  • 7Baba Y.Analysis of a GI/M/1 queue with multiple working vacations.Operations Research Letters,2005,33:201-209.
  • 8Banik A,Gupta U and Pathak S.On the GI/M/1/N queue with multiple working vacationsanalytic analysis and computation.Applied Mathematical Modelling,2007,31:1701-1710.
  • 9Li J,Tian N.The discrete-Time GI/Geom/1 queue with working vacations and vacation interruption.Applied Mathematics and Computation,2007,185:1-10.
  • 10Tian N,Ma Z and Liu M.The discrete time Geom/Geom/1 queue with multiple working vacations.Applied Mathematical Modelling,2007,32:2941-2953.

共引文献3

同被引文献11

  • 1SERVI L D, FINN S G. M/M/1 queues with working vacations (M/M/1/WV)[J]. Performance Evaluation, 2003, 50:41- 52.
  • 2WU Dean,Takagi Hideaki. M/G/1 queue with multiple working vacations[J].Performance Evaluation, 2006, 63:6544581.
  • 3TIAN Naishuo, MA Zhanyou, LIU Mingxin. The discrete time Geom/Geom/1 queue with multiple working vacations [J]. Applied Mathematical Modelling, 2008, 32:2941-2953.
  • 4LI Jihong, TIAN Naishuo, LIU Wenyuan. Discrete-time GI/Geom/1 queue with multiple working vacations [J].Queueing Systems, 2007, 56:53453.
  • 5LI Jihong, TIAN Naishuo. The discrete-time GI/Geo/1 queue with working vacations and vacation interruption [J].Applied Mathematics and Computation, 2007, 185:1-10.
  • 6LI Jihong, TIAN Naishuo, MA Zhanyou. Performance analysis of GI/M/1 queue with working vacations and vacation interruption[J]. Applied Mathematical Modelling, 2008, 32:2715-2730.
  • 7CHEN Haiyan, LI Jihong, TIAN Naishuo. The GI/M/1 queue with phase-type working vacations and vacation interruption [J]. Jouranl of Applied Mathematics Computing, 2009, 30 (1-2) : 121-141.
  • 8ZHANG Mian, HOU Zhengting. Performance analysis of M/G/I queue with working vacations and vacation interruption[J]. Journal of Computational and Applied Mathematics, 2010, 234:2977-2985.
  • 9LI Jihong, TIAN Naishuo, Zhang Zhe George, et al. Analysis of the M/G/1 queue with exponentially working vacations-a matrix analytic approach[J]. Queueing Systems: Theory and Applications, 2009, 61:139-166.
  • 10余玅妙,唐应辉.离散时间有限缓冲空间GI/Geom/1/N工作休假排队系统稳态概率算法及性能分析[J].系统工程理论与实践,2009,29(9):99-107. 被引量:9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部