期刊文献+

Zn_(0.15)Cd_(0.85)S量子点复合材料的合成及其对Cu^(2+)的超灵敏测定 被引量:4

Ultrasensitive Cu^(2+) sensing by Zn_(0.15)Cd_(0.85)S composite quantum dots
原文传递
导出
摘要 合成了高质量的半胱氨酸修饰Zn0.15Cd0.85S量子点复合材料.利用Cu2+对量子点荧光的猝灭作用,实现了Cu2+的定量检测.所合成的Zn0.15Cd0.85S量子点对其他常见的金属离子几乎没有响应,表明该方法具有较好的选择性.在优化条件下,Zn0.15Cd0.85S量子点荧光的猝灭程度与Cu2+浓度呈良好的线性关系,线性范围为6.0nM~1.0μM,检出限为1.0nM.对0.5μM标准溶液平行测定11次,相对标准偏差为2.0%.利用标准加入法对水样中Cu2+含量进行了测定,结果令人满意. The high quality Zn0.15Cd0.85S composite quantum dots (QDs) that capped with L-cysteine were synthesized and applied for ultrasensitive Cu^2+ sensing. The fluorescence of the as-obtained Zn0.15Cd0.85S QDs was quenched only by Cu^2+. A variety of other common metal ions hardly influenced the fluorescence of the QDs,indicating good selectivity of the method. The response of the optical sensor was linearly proportional to the concentration of Cu^2+ ranging from 6.0 nM to 1.0 μM. The detection limit was 1. 0 nM. A relative standard deviation of 2.0% for 11 replicates of a 0.5 μM Cu^2+ solution was obtained. The proposed method has been successfully applied to the detection of Cu^2+ in tap water.
出处 《中国科学:化学》 CAS CSCD 北大核心 2010年第8期1114-1120,共7页 SCIENTIA SINICA Chimica
基金 国家自然科学基金(20903048) 江南大学引进人才基金(20091207) 青年基金(2009LQN11)项目的资助
关键词 Zn0.15Cd0.85S 量子点 复合材料 CU^2+ Zn0.15Cd0.85S quantum dots composite material Cu^2+
  • 相关文献

参考文献22

  • 1Wu Q, Anslyn EV. Catalytic signal amplification using a heck reaction, an example in the fluorescence sensing of Cu(lI). J Am Chem Soc, 2004, 126:14682-14683.
  • 2Shao N, Chen WC, Tu XJ, Guo XQ. Fluorescent gold nanoparticles-based fluorescence sensor for Cu ions. Chem Commun, 2009, (10): 1736--1738.
  • 3Zhang Y, Cheung SM, Yang RH, Chan WH, Mo T, Li KA, Liu F. A copper ion-selective fluorescent sensor based on inner filter effect using a spiropyran derivative. Anal Chem, 2005, 77:7294 7303.
  • 4李太山,刘绍璞,刘忠芳,胡小莉,张立萍.碲化镉纳米晶溶液的荧光和共振瑞利散射特性及碲化镉纳米晶与氨基糖苷类抗生素相互作用[J].中国科学(B辑),2008,38(9):798-807. 被引量:18
  • 5Wang GL, Xu JJ, Chen HY, Fu SZ. Label-free photoelectrochemical immunoassay for a-fetoprotein detection based on TiO2/CdS hybrid. Biosens Bioelectron, 2009, 25:791--796.
  • 6Huang Y, Zhang W, Xiao H, Li G. An electrochemical investigation of glucose oxidase at a CdS nanoparticles modified electrode. Biosens Bioelectron, 2005, 21: 817--821.
  • 7Klostranec JM, Chan WCW. Quantum dots in biological and biomedical research: recent progress and present challenges. Adv Mater, 2006, 18:1953--1964.
  • 8Bruchez M J, Moronne M, Alivisatos AP. Semiconductor nanocrystals as fluorescent biological labels. Science, 1998, 281 : 2013--2016.
  • 9Chen Y, Rosenzweig Z. Luminescent CdS quantum dots as selective ion probes. Anal Chem, 2002, 74:5132--5138.
  • 10Li H, Han C, Zhang L. Synthesis of cadmium selenide quantum dots modified with thiourea type ligands as fluorescent probes for iodide ions. JMater Chem, 2008, 18:4543--4548.

二级参考文献33

  • 1何佑秋,刘绍璞,刘忠芳,胡小莉,鲁群岷.金纳米微粒作探针共振瑞利散射光谱法测定卡那霉素[J].化学学报,2005,63(11):997-1002. 被引量:30
  • 2刘勇,徐耀,李军平,章斌,吴东,孙予罕.不同形貌/晶型CdSe纳米材料的简易合成[J].化学学报,2005,63(21):2017-2020. 被引量:10
  • 3梅芳,何锡文,李娟,李文友,张玉奎.水溶性CdSe/CdS核壳纳米粒子制备的影响因素及其对CdSe/CdS光谱特性的影响[J].化学学报,2006,64(22):2265-2270. 被引量:17
  • 4Henglein A. Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem Rev, 1989, 89(8): 1861-1873.
  • 5Alivisatos A P. Perspectives on the physical chemistry of semiconductor nanocrystals. J Phys Chem, 1996, 100(31): 13226-13239.
  • 6Kagan C R, Murray C B, Bawendi M G. Long-range resonance transfer of electronic excitations in close-packed CdSe quantum-dot solids. Phys Rev B, 1996, 54(12): 8633-8643.
  • 7Nirmal M, Brus L. Luminescence photophysics in semiconductor nanocrystals. Acc Chem Res, 1999, 32(5): 407-414.
  • 8Peng Z A, Peng X. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as Precursor. J Am Chem Soc, 2001, 123(1): 183-184.
  • 9Yu W W, Wang Y A, Peng X. Formation and stability of size-, shape-, and structure-controlled CdTe nanocrystals: Ligand effects on monomers and nanocrystals. Chem Mater, 2003, 15(22): 4300-4308.
  • 10Yu W W, Peng X. Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents: tunable reactivity of monomers. Angew Chem Int Ed, 2002, 41 (13): 2368-2371.

共引文献17

同被引文献48

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部