期刊文献+

羊抗人IgG在金纳米通道中的迁移

Transport properties of goat anti-human IgG in gold nanotube membrane
原文传递
导出
摘要 以聚碳酸酯超滤膜为基板,用化学镀的方法在超滤膜上沉积金,制得直径在45nm左右的金纳米通道阵列,利用制得的金纳米通道阵列搭建离子电流测量平台,可实现对羊抗人IgG分子的浓度检测.当羊抗人IgG分子通过直径45nm的金纳米通道时,由于物理占位及表面电荷的影响,会引起离子电流发生变化;在KCl浓度为0.15mol/L(pH7.48)溶液中,IgG分子的物理占位对离子电流有阻塞作用,会导致电流减小,IgG浓度在1.8~18ng/mL范围内,减小量与浓度成线性关系;实现了对IgG的定量检测.KCl浓度降低到0.025mol/L时,由于IgG分子扩散层内反离子对通道内离子浓度的贡献占主导地位,从而造成离子电流随着IgG浓度增大而增大. The preparation of Gold Nanotube Membranes was achieved by using electroless deposition of gold in the substrate of polycarbonate membranes with 100 nm diameter nanopores. The diameter of nanopore on the substrate can be reduced from 100 nm to about 45 nm due to the gold deposition. Using the nanotube membranes,a test rig was set up to measure the ionic current through the nanotube in KCl solution (pH 7.48),as goat anti-human IgG molecules moved through the nanotube membrane,it will cause ionic current modulations. In the high strength KCl concentration 0.15 mol/L,the ionic current decreases because of the blocking effect of IgG molecules in nanotube. The decrement of current is in linear relationship with the concentration of IgG in the range of 1.8-18 ng/mL. When the concentration of KCl is reduced to 0.025 mol/L,the ionic current increases with the IgG concentration because the counterions that screening around the IgG molecules contribute a lot to the ionic current and cancel the blocking effect of the IgG molecules.
出处 《中国科学:化学》 CAS CSCD 北大核心 2010年第8期1130-1135,共6页 SCIENTIA SINICA Chimica
基金 国家自然科学基金(50875047&50925519)支持
关键词 金纳米通道 传感器 离子电流 羊抗人IgG 双电层 gold nanotube membrane sensor ionic current goat anti-human IgG electric double layer
  • 相关文献

参考文献20

  • 1Jirage KB, Huteen JC, Martin CR. Effect of thiol chemisorption on transport properties of gold nanotubule. Anal Chem, 1999, 71: 4913--4918.
  • 2Fologea D, Gershow M, Ledden B, McNabb DS, Golovchenko JA, Li JL. Detecting single stranded DNA with a solid state nanopore. Nano Lett, 2005, 5:1905--1909.
  • 3Gierhart BC, Howitt DG, Chen S J, Zhu Z, Kotecki DE, Smith RL, Collins SD. Nanopore with transverse nanoelectrodes for electrical characterization and sequencing of DNA. Sens Actuators B, 2008, 132:539--600.
  • 4Kasianowicz JJ, Brandin E, Branton D, Deamer DW. Characterization of individual polynucleofide molecules using a membrane channel. Proc Natl Acad Sci USA, 1996, 93:13770--13773.
  • 5Deeker C. Solid-state nanopores. Nat Nanotechnol, 2007, 2:209--215.
  • 6Li JL, Stein D, McMullan C, Branton D, Aziz MJ, Golovchenko JA. Ion-beam sculption at nanometer length scales. Nature, 2001, 412(6843): 166--169.
  • 7Gadgil VJ, Tong HD, Cesa Y, Bennink ML. Fabrication of nano structures in thin membranes with focused ion beam technology. Surf Coat Technol, 2009, 203:2436--3441.
  • 8Kim MJ, Wanunu M, Bell DC, Meller A. Rapid fabrication of uniformly sized nanopores and nanopore arrays for parallel DNA analysis. Adv Mater, 2006, 18:3149--3153.
  • 9Chen P, Gu JJ, Brandin E, Kim Y, Wang Q, Branton D. Probing single DNA molecule transport using fabricated nanopores. Nano Lett, 2004, 4:2293--2298.
  • 10Meller A, Branton D, Single molecule measurements of DNA transport through a nanopore. Electrophoresis, 2002, 23(16): 2583--2591.

二级参考文献46

  • 1黄杉生,许光明,何晓晓,王柯敏,陈小洪.金纳米通道用于免疫球蛋白测试的研究[J].科学通报,2004,49(14):1368-1370. 被引量:6
  • 2孙亚斌,丁小斌,郑朝晖,成煦,彭宇行.智能表面[J].化学通报,2006,69(4):252-260. 被引量:2
  • 3王月荣,胡平,陈令新,梁琼麟,罗国安,王义明.金纳米通道的研究及其在分析化学中的应用[J].分析化学,2006,34(9):1348-1352. 被引量:2
  • 4黄杉生,尹志芳,羊小海,王柯敏,谭蔚泓,何晓晓,钟桐生.基于金纳米通道膜检测脱氧核糖核酸的研究[J].分析化学,2006,34(11):1515-1518. 被引量:5
  • 5Lee S B, Mitchell D T, Trofin L, et al. Antibody-based bio-nanotube membranes for enationmeric drug separations. Science, 2002, 296:2198~2200
  • 6Jirage K B, Huteen J C, Martin C R. Effect of thiol chemisorption on transport properties of gold nanotubule. Anal Chem, 1997, 71:4913~4918
  • 7Jirage K B, Huteen J C, Martin C R. Nanotubule- based molecular filtration membranes. Science, 1997, 278:655~-658
  • 8Song L, Hobaugh M R, Shustak C, et al. Structure of staphylococcal α-hemolysin, a heptameric transmembrane pore. Science,1996, 274(5294): 1859~1865
  • 9Kling J. Multipurpore nanopore sensors. Anal Chem, 2001, 73(11):306-307
  • 10Deamer D W, Akeson M. Nanopores and nucleic acids: prospects for altrarapid sequencing. Trends Biotechnol, 2000, 18(4): 147~151

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部