期刊文献+

物理法COD减排理论极限能耗的热力学分析 被引量:2

Thermodynamic analysis on theoretical energy consumption for organic contaminants removal by physical methods
原文传递
导出
摘要 首先针对系统的可持续性发展提出了三点本质要求,在此基础上提出了基于减排过程节能机制的热力学框架,并根据热力学第一、第二定律建立了计算物理法脱除有机污染物理论极限能耗的热力学分析方法.此外,以典型有机污染物的脱除为例,分别计算了封闭体系中298.15K和1.01325×105Pa下不同初始浓度、不同种类以及不同COD减排量的有机污染物脱除的理论极限能耗.本文的计算结果表明,废水中有机污染物的减排需要很高的能耗,脱除相同量有机污染物所需的理论极限能耗随着初始浓度的减小而显著增加,且不同种类污染物处理的难易程度和能耗高低相差很大,这充分说明减排与节能有着密不可分的联系,充分考虑污染物的种类、物理化学性质、毒性和浓度将有助于减排政策的科学制定. Energy-saving and environmental protections are two important and hot issues worldwide in recent years. The scholars all over the world are paying more and more attention on sustainable development and the relationships of energy consumption efficiency with green chemistry. However,no quantitative investigations on the theoretical energy consumptions of the waste removal process have been reported. In this work,the essential requirements for evaluating the sustainable development of a system and the thermodynamic framework of energy conservation mechanism for waste-removal process are proposed. A thermodynamic analysis method based on the First and Second Law of Thermodynamics is proposed to analyze the theoretical approach of energy consumption for the organic contaminant removal process by physical methods. Moreover,the theoretical approach of energy consumption for the removal of representative organic contaminants with different initial concentrations,different kinds and different amounts at 298.15 K and 1.01325×10^5 Pa by physical methods is investigated. The results show that the waste treatment process is with high energy consumption. And the theoretical approach of energy consumption for the removal of organic contaminant increases with the decrease of initial concentrations in aqueous solutions. The theoretical approach of energy consumption for the removal of different organic contaminants is quite different. Furthermore,the theoretical approach of energy consumption increases greatly with the increase of the COD removal amount. The quantitative investigations on the theoretical approach of energy consumptions for the organic contaminant removal process will provide important information for the study of the energy conservation mechanism for waste-removal process and the relationships of energy consumption efficiency with the waste removal efficiency and greenness.
出处 《中国科学:化学》 CAS CSCD 北大核心 2010年第8期1179-1185,共7页 SCIENTIA SINICA Chimica
基金 国家高技术研究发展计划项目(2006AA03Z455) 国家自然科学基金合作交流项目NSFC-RGC联合资助项目(20731160614) 国家自然科学基金(20976080)资助 长江学者和创新团队发展计划项目(IRT0732) 国家重点基础研究发展计划前期研究专项(2009CB226103)
关键词 可持续性发展 热力学理论分析 节能减排 理论极限能耗 有毒有机污染物治理 sustainable development thermodynamic analysis energy-saving and environmental protection theoretical energy consumption organic contaminant removal
  • 相关文献

参考文献3

二级参考文献42

  • 1李德虎,李顺祺.资源物理学及资源消耗的生态价值系数评估[J].自然资源学报,1994,9(1):85-92. 被引量:4
  • 2钱国坻,范秉宪,童克锦,孙永洲,蔡德兴.改善酸性染料溶解度途径初探[J].染料工业,1995,32(4):35-39. 被引量:4
  • 3Erkman S.Industrial ecology:an historical view.Cleaner Prod,1997,5(1-2):1~10.
  • 4项新耀.工程yong分析[M].北京:石油工业出版社,1990..
  • 5Jorgensen S E.State-of-the-art of ecological modeling with emphasis on development of structural dynamic models.Ecol Model,1989,120:75~96.
  • 6Marques J C,Pardal M A,Nielsen S N,et al.Analysis of the properties of exergy and biodiversity along an estuarine gradient of eutrophication.Ecol Model,1997,102:155~167.
  • 7Ayres R U.Eco-thermodynamics:economics and the second law.Ecological Economics,1998,26:189~209.
  • 8Stepanov V S,Stepannov S V.Energy efficiencies and environmental impact of complex industrial technologies.Energy,1998,23(12):1083~1088.
  • 9Koroneos C,Spachos T,Moussiopoulos N.Exergy analysis of renewable energy sources.Renewable Energy,2003,28:295~310.
  • 10Rosen M A,Dincer I.On exergy and environmental impact.International Journal of Energy Research,1997,21:643~654.

共引文献66

同被引文献19

  • 1王以光.抗生素生物技术[M].北京:化学工业出版社,2009.
  • 2石元春.我国的能源忧思[N].中国科学报,2012-02-21.
  • 3Federal Ministry of Food-Agriculture and Consumer Protection G.Bioenergy in Germany:Facts and Figures[M].Germany:FNR.2012.
  • 4Voge A.Biomethane in Europe-Status Quo & Perspectives[R].Berlin:2012.
  • 5Held J.Biomethane as vehicle fuel-Showcasing the Swedish development[R].IGRC,Seoul,2011.
  • 6Deublein D,Steinhauser A.Biogas from Waste and Renewable Resources-An Introduction[M].Weinheim,Germany:Wiley-VCH Verlag GmbH & Co.KGaA,2008.
  • 7Insam H,Franke-Whittle I,Goberna M.Microbes at Work-From Wastes to Resources[M].Berlin,Germany:Sprigner GmbH,2010.
  • 8Shao Q,Zhou J,Lu L,et al.Anomalous hydration shell order of Na+ and K+ inside carbon nanotubes[J].Nano.Letter,2009,9 (3):989-994.
  • 9Lu X,Hu Y.Molecular Thermodynamics of Complex Systems[M].Berlin,Germany:SprignerGmbH,2009.
  • 10陆小华.材料化学工程中的热力学与分子模拟研究[M].北京:科学出版社,2011.

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部