期刊文献+

简约支持向量聚类

Reduced Support Vector Clustering
下载PDF
导出
摘要 针对传统支持向量聚类(support vector clustering,SVC)的高耗费和低性能弊端,提出了简约支持向量聚类算法(reduced support vector clustering,RSVC).RSVC的核心是简约策略和新的簇划分方法.前者是基于薛定谔方程而设计,提取对模型生成有重要意义的数据构成简约子集,并在此子集之上完成优化过程.后者提出并证明了高斯核函数特征空间的几何性质,并以此设计方法完成对数据簇的辨识任务.理论分析和实验结果表明,和同类算法相比,RSVC可更有效地解决两个弊端,在实际应用中取得良好的聚类效果. Although with multi applications in data mining,fault diagnosis,bioinformatics and other aspects,the popularity of support vector clustering(SVC) algorithm is affected by two shortcomings:expensive computation and poor performance.Focus on such two bottlenecks,a novel algorithm,reduced support vector clustering(RSVC),is proposed.RSVC shares the frame of SVC,but it consists of reduction strategy and the new labeling approach.Reduction strategy is designed according to Schrdinger equation;it extracts those data that are important to model development to form a qualified subset,and optimizes the objective on this subset.The resulting clustering model has little loss in quality while consuming less cost.The new labeling approach is based on geometric properties of feature space of Gauss kernel function;it detects clusters by clustering support vectors and other data respectively in a clear way.The geometric properties are verified to guarantee the validation of the new labeling approach.Theoretical analysis and empirical evidence demonstrate that RSVC overcomes the two bottlenecks well and has advantage over its peers in performance and efficiency.And RSVC also exhibits fine behaviors.It shows that RSVC can work as a friendly clustering method in more applications.
出处 《计算机研究与发展》 EI CSCD 北大核心 2010年第8期1372-1381,共10页 Journal of Computer Research and Development
基金 国家自然科学基金重点项目(60673099 60873146) 国家"八六三"高技术研究发展计划基金项目(2007AA04Z114 2009AA02Z307) 吉林省生物识别新技术重点实验室基金项目(20082209) 吉林大学"211工程"三期建设基金项目 "符号计算与知识工程"教育部重点实验室基金项目~~
关键词 支持向量聚类 简约策略 薛定谔方程 新的簇划分方法 特征空间几何性质 support vector clustering(SVC) reduction strategy Schrdinger equation new labeling approach geometric property of feature space
  • 相关文献

参考文献23

  • 1Ben-Hur A,Horn D,et al.Support vector clustering[J].Journal of Machine Learning,2001,2:125-137.
  • 2Sch(o)lkopf B,Smola A J.Learning with Kernels:Support Vector Machines,Regularization,Optimization,and Beyond[M].Cambridge:MIT Press,2002:105-209.
  • 3G(a)rtner T,Lloyd J W,et al.Kernels and distances for structured data[J].Machine Learning,2004,57(3):205-232.
  • 4李晓黎,刘继敏,史忠植.基于支持向量机与无监督聚类相结合的中文网页分类器[J].计算机学报,2001,24(1):62-68. 被引量:108
  • 5侯风雷,王炳锡.基于说话人聚类和支持向量机的说话人确认研究[J].计算机应用,2002,22(10):33-35. 被引量:11
  • 6Yang J,Estivill-Castro V,S Chalup.Support vector clustering through proximity graph modeling[C] //Proc of the 9th Int Conf on Neural Information Processing.Los Alamitos,CA:IEEE Computer Society,2002:898-903.
  • 7Lee J,Lee D.An improved cluster labeling method for support vector clustering[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2005,27(3):461-464.
  • 8Lee S H,Daniels K M.Cone cluster labeling for support vector clustering[C] //Proc of the 6th SIAM Int Conf on Data Mining.Upper Saddle River,NJ:Prentice Hall,2006:484-493.
  • 9Horn D,Gottlieb A.Algorithm for data clustering in pattern recognition problems based on quantum mechanics[J].Physical Review Letters,2002,88(1):018702.
  • 10田铮,李小斌,句彦伟.谱聚类的扰动分析[J].中国科学(E辑),2007,37(4):527-543. 被引量:33

二级参考文献26

  • 1袁志发 周静芋.多元统计分析[M].北京:科学出版社,2003..
  • 2Bach R, Jordan M I. Learning spectral clustering. University of California at Berkeley Technical report UCB/CSD-03-1249.2003
  • 3Xing E P, Jordan M I. On semidefinite relaxation for normalized k-cut and connections to spectral clustering. University of California at Berkeley Technical report UCB/CSD-3- 1265. 2003
  • 4Donath W E, Hoffman A J. Lower bounds for partitioning of graphs. IBM J Res Develop, 1973, 17(5): 420-425
  • 5Fiedler M. A property of eigenvectors of non-negative symmetric matrices and its application to graph theory. Czech Math J,1975, 25(100): 619-633
  • 6Hagen L, Kahng A B. New spectral methods for ratio cut partitioning and clustering. IEEE Trans Comput-Aided Des Integr Circuits Syst, 1992, 11(9): 1074-1085
  • 7Chan P K, Schlag M D E Zien J Y. Spectral k-way ratio-cut partitioning and clustering. IEEE Trans Comput-Aided Des Integr Circuits syst, 1994, 13(9): 1088-1096
  • 8Shi J, Malik J. Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell, 2000, 22(8): 888-905
  • 9Fowlkes C, Belongie S, Chung F, et al. Spectral grouping using the Nystrom method. IEEE Trans Pattern Anal Mach Intell,2004, 26(2): 214-225
  • 10Ding C H Q, He X, Zha H, et al. A min-max cut algorithm for graph partitioning and data clustering. In: Cercone N, Lin T Y,Wu X, eds. ICDM 2001. Los Alamitos, California: IEEE Computer Society, 2001. 107-114

共引文献154

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部