期刊文献+

水溶性纳米量子点在玉米幼根中运输的可视化 被引量:1

Visualization for Water-Soluble Nano Quantum Dots Transporting in Maize (Zea mays L.) Seedling Roots
原文传递
导出
摘要 在纳米生物学效应研究中,纳米颗粒能否自由进入植物体内是一个亟待考证的关键问题。本文尝试采用一定浓度的水溶性纳米量子点溶液培养玉米幼根,然后徒手切片,用荧光显微镜直接观察发光量子点在根内的运输和分布。结果表明,量子点能够自由进入玉米根且在多种类型的细胞内都有分布;尤其是在导管内也观察到量子点,说明这种纳米材料能够穿透极厚的细胞壁输送到胞内。本文也讨论了该实验设计的优缺点。 In the study of nano-biological effect,it is urgent to find evidence for that if nanoparticles can transport into a plant freely.In this paper,maize seedlings are cultured in Hogland's neutrient liquid containing water-soluble quantum dot.Five days later,the seedling roots are sliced by hands and watched by fluorescence microscopy in real time.Results show that the quantum dots can transport freely into the maize roots and distribute in various type cells,especially in the vessel cell,indicating the nanoparticles can penetrate through the extreme thick cell wall and transport into the cells.We also discuss the advantages and disadvantages of this experimental design.
出处 《植物生理学通讯》 CAS CSCD 北大核心 2010年第7期719-723,共5页 Plant Physiology Communications
关键词 量子点 可视化 玉米根 运输 quantum dot visualization maize root transport
  • 相关文献

参考文献14

  • 1徐建华(2000).植物根与茎输水结构的研究和功能分析[博士论文].北京:中国科学院植物研究所.
  • 2徐建华,李冰石,张建华,刘鹏,董宇辉,孙家林.观察植物根的内皮层细胞壁内表面细微结构的表面物理技术[J].植物生理学通讯,2006,42(5):933-936. 被引量:1
  • 3徐建华,孙家林,郭继华,张建华.植物根的内皮层结构与生理功能[J].植物生理学通讯,2002,38(2):187-192. 被引量:7
  • 4Bai CL (2005). Ascent of nanoscience in China. Science, 309: 61-63.
  • 5Biscas P, Wu CY (2005). Nanoparticles and the environment. J Air Waste Manag Assoc, 55:708-746.
  • 6Chen Z, Meng H, Yuan H, Xing GM, Chen CY, Zhao F, Wang Y, Zhang CC, Zhao YL (2007). Identification of target organs of copper nanoparticles with ICP-MS technique. J Radioanal Nucl Chem, 273:599-603.
  • 7Lee WM, An YJ, Yoon H, Kweon HS (2008). Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseoluse radiatus) and wheat (Triticum aestivum): plant agar test for water-insoluble nanoparticles. Environ Toxicol Chem, 27:1915-1921.
  • 8Lin DH, Xing BS (2007). Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut, 150:243-250.
  • 9Lin DH, Xing BS (2008). Root uptake and phytoxicity of ZnO nanoparticles. Environ Sci Technol, 42:5580-5585.
  • 10Meng H, Chen Z, Xing GM, Yuan H, Chen CY, Zhao F, Wang Y, Zhang CC, Zhao YL (2007). Ultrahigh reactivity and grave nanotoxicity of copper nanoparticles. J Radioanal Nucl Chem, 273:595-598.

二级参考文献11

  • 1徐建华,陶冶,黄艳,孙家林.植物根内皮层凯氏带染色的小檗碱-苯胺蓝对染法[J].植物生理学通讯,2004,40(4):479-482. 被引量:5
  • 2Brundrett MC,Enstone DE,Peterson CA (1988).A berberineaniline blue fluorescent staining procedure for subebin,lignin and callose in plant tissue.Protoplasma,146:133~142
  • 3Nagahashi G,Thomson WW,Leonard RT (1974).The casparian strip as a barrier to the movement of lanthanum in corn roots.Science,183:670~671
  • 4Peterson CA,Emanuel ME,Humphreys GB (1981a).Pathway of movement of apoplastic fluorescent dye tracers through the endodermis at the site of secondary root formation in corn (Zea mays L.) and broad bean (Viciafaba).Can J Bot,59:618 ~625
  • 5Peterson CA,Peterson RL,Robards AW (1981b).A correlated histochemical and ultrastructural study of the epidermis and hypodermis of onion roots.Protoplasma,96:1~2
  • 6Peterson CA,Steudle E (1993).Lateral hydraulic conductivity of early metaxylem vessels in Zea mays L.roots.Planta,189:288~297
  • 7Priestley JH,North EE (1922).Physiological studies in plant anatomy.Ⅲ.The structure ofthe endodermis in relation to its function.New Phytol,21:113~139
  • 8Steudle E,Peterson CA (1998).How does water get through roots?J Exp Bot,322:775~788
  • 9Zeier J,Schreiber L (1997).Chemical composition of hypodermal and endodermal cell walls and xylem vessels isolated from Clivia miniata:identification of the biopolymers lignin and suberin.Plant Physiol,113:1223~1231
  • 10邢树平,李冰石,王琛,胡玉熹,林金星.雪松和水杉花粉外壁亚结构的原子力显微镜研究[J].科学通报,2000,45(3):306-310. 被引量:6

共引文献6

同被引文献78

  • 1Miralles P, Church T L, Harris A T. Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants [ J ].Environmental Science and Technology, 2012, 46 (17) : 9224- 9239.
  • 2Rico C M, Majumdar S, Duarte-Gardea M, et al. Interaction of nanoparticles with edible plants and their possible implications in the food chain [ J ]. Journal of Agricultural and Food Chemistry, 2011, 59(8) : 3485-3498.
  • 3Michalet X, Pinaud F F, Bentolila L A, et al. Quantum dots for live cells, in vivo imaging, and diagnostics [ J ]. Science, 2005, 307(5709) : 538-544.
  • 4Hochella M F, Lower S K, Maurice P A, et al. Nanominerals, mineral nanoparticles, and earth systems [ J ]. Science, 2008, 319(5870) : 1631-1635.
  • 5Lowry G V, Gregory K B, Apte S C, et al. Transformations of nanomaterials in the environment[ J]. Environmental Science and Technology, 2012, 46( 13): 6893-6899.
  • 6Klaine S, Alvarez P J J, Batley G E, et al. Nanomaterials in the environment: behavior, fate, bioavailability, and effects [J]. Environmental Toxicology and Chemistry, 2008, 27 ( 9 ) : 1825- 1851.
  • 7Ju-Nam Y, Lead J R. Manufactured nanopartieles: An overview of their chemistry, interactions and potential environmental implications[ J ]. Science of the Total Environment, 2008, 400 (1-3) : 396-414.
  • 8Xia T, Li N, Nel A E. Potential health impact of nanopartieles [ Jl. Annual Review of Public Health, 2009, 30( 1 ) : 137-150.
  • 9Handy R, Von der Kammer F, Lead J, et al. The ecotoxicology and chemistry of manufactured nanopartieles [ J]. Ecotoxicology, 2008, 17(4): 287-314.
  • 10Krysanov E Y, Pavlov D S, Demidova T B, et al. Effect of nanoparticles on aquatic organisms[ J]. Biology Bulletin, 2010, 37(4) : 406-412.

引证文献1

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部