期刊文献+

基于网格计算的大规模数据集SVM分类方法研究

Research on Large Scale Data Sets SVM Classification Method Based on Grid Computing
下载PDF
导出
摘要 针对SVM分类过程中,处理大规模训练样本集遇到的因样本维度高、消耗大量内存导致分类效率低下的问题,提出基于网格环境的计算策略。该策略针对密集型计算问题分别提出按步骤、按功能、按数据进行任务分解的三种解决方案,用户根据SVM样本训练和分类的实际来选择使用哪一种方案。对遥感数据分别在单机环境和网格环境的对比实验表明,能够提高训练和分类速度,在计算环境的层面弥补处理大规模数据对计算性能的高要求。 Typical computational problems, such as consuming large amounts of memory due to high sam- ple dimensions during large-scale training sets SVM classification, are overcome with the strate- gy of reducing large-scale SVM training samples based on grid computing. Based on this strate- gy, puts forward three kinds of solution according to step, function or data to decompose the task, users can choose a suitable one to fit their own need. The experiment dealing with remote sensing data in single machine and grid environment shows that it improves the speeds of train- ing and classification, and makes up for deficiency of dealing with mass data in the level of computing environment.
作者 胡明 曾联明
出处 《现代计算机》 2010年第7期16-19,23,共5页 Modern Computer
基金 广东省自然科学基金(No.8452800001001086)
关键词 SVM 网格计算 分类 大规模数据集 SVM Grid Computing Classification Large Scale Data Sets
  • 相关文献

参考文献2

二级参考文献2

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部