期刊文献+

基于标签的强化学习推荐算法研究与应用 被引量:2

Research and application of tag-based recommendation algorithm based on reinforcement learning
下载PDF
导出
摘要 针对协同过滤推荐算法性能稳定性往往受到数据稀疏性影响的问题,在强化学习的框架下提出一种基于标签的协同过滤推荐算法,利用标签模拟用户兴趣来构造非稀疏的个性化数据,并将模拟数据与历史用户访问数据相结合进行协同过滤推荐。实验结果表明,引入基于标签的个性化数据可以有效提升协同过滤算法的性能,且对两种数据的有效结合可以获得最好的效果。 In order to solve instability problem in the performance of collaborative filtering recommendation algorithms caused by the data sparseness,this paper proposed an algorithm called tag informed reinforcement learning recommendation model (TIRLR) in framework of reinforcement learning. This paper used the tags to simulate user profiles to construct substantial personalized data,and combined simulated data and historical data to collaborative filtering recommendation. Experimental results show that TIRLR can effectively enhance the performance of collaborative filtering algorithms,and it can get the best result by combining simulated data and historical data.
出处 《计算机应用研究》 CSCD 北大核心 2010年第8期2845-2847,2852,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(90924026) 国家"863"计划资助项目(2008AA01Z121 2007AA01Z338)
关键词 强化学习 推荐 标签 协同过滤 reinforcement learning recommendation tag collaborative filtering
  • 相关文献

参考文献13

  • 1LINDEN G,SMITH B,YORK J.Amazon.com recommendations:item-to-item collaborative filtering[J].IEEE Internet Computing,2003,7(1):76-80.
  • 2BENNETT J,LANNING S.The Netflix prize[C] // Proc of KDD Cup and Workshop in Conjunction with KDD.2007:3-6.
  • 3De GEMMIS M,LOPS P,SEMERARO G,et al.Integrating tags in a semantic content-based recommender[C] //Proc of the 2nd ACM Conference on Recommender Systems.New York:ACM Press,2008:163-170.
  • 4BALABANOVIC′ M,SHOHAM Y.Fab:content-based,collaborative recommendation[J].Communications of the ACM,1997,40(3):66-72.
  • 5SEO Y W,ZHANG B T.A reinforcement learning agent for persona-lized information filtering[C] // Proc of the 5th International Confer-ence on Intelligent User Interfaces.New York:ACM Press,2000:248-251.
  • 6BREESE J,HECKERMAN D,KADIE C.Empirical analysis of predictive algorithms for collaborative filtering[C] //Proc of the 14th Conference on Uncertainty in Artificial Intelligence.San Francisco:Morgan Kaufmann,1998:43-52.
  • 7SARWAR B M,KARYPIS G,KOWSTAN J,et al.Item-based collaborative filtering recommendation algorithms[C] // Proc of the 10th International Conference on World Wide Web Conference.New York:ACM Press,2001:285-295.
  • 8SUTTON R S,BARTO A G.Reinforcement learning:an introduction[M].Cambridge:MIT Press,1998.
  • 9TEN HAGEN S H G,HAGEN S H G,KROSE B J A.Generalizing in TD(lambda) learning[C] //Proc of the 3rd Joint Conference on Information Science.1997:319-322.
  • 10IRODOVA M,SLOAN R H.Reinforcement learning and function approximation[C] //Proc of the Florida AI Research Society Confe-rence.2005:455-461.

同被引文献16

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部