期刊文献+

遗传K-均值初始化的t混合模型医学图像聚类 被引量:2

t-mixture model clustering based on genetic K-means initialization for medical images
下载PDF
导出
摘要 针对基于混合模型的图像聚类质量易受混合模型参数初始值的影响,提出一种遗传K-均值初始化的t混合模型医学图像聚类方法。该方法构建一种医学图像的t混合模型,将遗传算法与K-均值算法相结合,实现对医学图像的初始划分,从而获得混合模型的初始参数,有效克服混合模型对参数初始值选择的敏感性问题,用EM算法多次迭代估计t混合模型参数;最后根据得到的混合模型对医学图像进行聚类。实验表明,该方法实现了医学图像较精准的聚类,有较好的稳定性和通用性。 The clustering quality of the mixture model clustering for images is vulnerable to the initial values of the mixture model parameters. To solve this problem,this paper proposed one method that based on initialization of genetic K-means algorithm of t mixture model for medical images. It built a t mixture model of medical image,and integrated genetic algorithm with K-means algorithm to realize the initial division of medical images,and then got the initial values of the mixture model. It could effectively overcome the sensitivity of mixture model to the initial selected parameter. Used EM algorithm to estimate the parameters of t mixture model. Finally,clustered the medical images at the base of the proposed mixture model. Experimental results show that medical images can be clustered accurately and the algorithm has great versatility and robustness.
出处 《计算机应用研究》 CSCD 北大核心 2010年第8期3150-3152,3155,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(60841003)
关键词 遗传算法 K-均值算法 参数初始化 T混合模型 聚类分析 genetic algorithm K-means algorithm parameter initialization t mixture model clustering analysis
  • 相关文献

参考文献6

  • 1WANG Hai-xian,ZHANG Quan-bing,LUO Bin,et al.Robust mixture modeling using multivariate t-distribution with missing information[J].Pattern Recognition Letters,2004,25(6):701-710.
  • 2BANDYOPADHYAY S,MAULIK U.Genetic clustering for automatic evolution of clusters and application to image classification[J].Pattern Recognition,2002,35(6):1197-1208.
  • 3PEEL D,McLACHLAN G J.Robust mixture modeling using the t-distribution[J].Statistics and Computing,2000,10(4):339-348.
  • 4WEHRENS R,BUYDENS L M C,FRALEY C,et al.Model-based clustering for image segmentation and large datasets via sampling[J].Journal of Classification,2004,21(2):231-253.
  • 5SCHWARZ G.Estimating the dimension of a model[J].Annals of Statistics,1978,6(2):461-464.
  • 6KERIBIN C.Consistent estimation of the order of mixture models[J].The Indian Journal of Statistics,2000,62:49-66.

同被引文献44

  • 1钱鑫,张龙波,田爱奎,邓齐志,汪金苗.一种面向数据密集型计算环境的聚类算法[J].济南大学学报(自然科学版),2013,27(1):11-15. 被引量:3
  • 2任建峰,郭雷,李刚.多类支持向量机的自然图像分类[J].西北工业大学学报,2005,23(3):295-298. 被引量:7
  • 3陆斌杰.数据挖掘技术在医院管理中的应用[J].中国医疗器械杂志,2006,30(4):256-257. 被引量:6
  • 4韩家炜.数据挖掘:概念与技术[M].北京:机械工业出版社,2006.
  • 5CARUANA R. Multitask learning[ D ]. Pennsylvomia: Carnegie Mellon University, 1997 : 1-4.
  • 6BAKKER B, HESKES T. Task clustering and gating for Bayesian multi-task learning[ J ]. Journal of Machine Leaming Research, 2003,4: 83-99.
  • 7HESKES T. Empirical Bayes for learning to learn [ C ]//Proc of IC- ML. 2000 : 367 - 374.
  • 8THRUN S, PRATT L. Learning to learn [ M ]. [ S. 1. ] : Kluwer Aca- demic Publishers, 1997.
  • 9EVGENIOU T, MASSIMILIANO P. Regularized multi-task learning [ C]//Proc of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2004 : 109-117.
  • 10曾勇.基于关联规则的电子病历挖掘的应用研究[D].广州:华南理工大学.2012.

引证文献2

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部