摘要
维吾尔文字的书写特点,给手写字符识别带来了很大的技术难题.提出了利用BP神经网络进行手写维吾尔文字符识别的方法.根据手写体运动轨迹进行特征提取,得到14维的特征编码,利用此编码对BP神经网络进行训练和学习,形成良好的识别系统.实验表明,该方法提高了字符识别的准确率.
The written characteristic of Uyghur language has brought difficult broblems for handwritten character recognition in technology. This paper proposes a method of handwriting recognition of Urghur letters using BP neural network. According to the tracks of the script, the method extracts features of the letters, forms a coding with fourteen dimensions. Secondly, trains the BP neural network and studies using the coding, builds good system of recognition. Simulations show that this method enhanced the veracity of recognition.
出处
《微电子学与计算机》
CSCD
北大核心
2010年第8期238-241,共4页
Microelectronics & Computer
关键词
维吾尔文
神经网络
手写字符识别
特征提取
Uyghur character
neural network
handwritten character recognition
feature extraction