期刊文献+

基于进化模糊神经网络的上肢康复机器人自适应阻抗控制 被引量:2

Adaptive Impedance Control for Upper-limb Rehabilitation Robot Based on Evolutionary Fuzzy Neural Network
下载PDF
导出
摘要 针对机器人辅助患肢进行康复训练时患肢病情的变化对系统稳定性造成的影响,在传统阻抗控制方法基础上,提出了一种基于进化模糊神经网络的自适应阻抗控制方法。该方法采用能较为准确反映患肢病情特性的患肢机械阻抗参数作为控制器输入,根据在线辨识得到的机械阻抗参数,运用进化模糊神经网络对目标阻抗控制参数进行动态调整。在调整过程中,首先采用混合进化算法离线优化目标阻抗控制参数,然后再利用动态BP算法对目标阻抗控制参数在线作进一步地调整。分析和仿真结果表明,改进后的方法较传统阻抗控制方法更能有效地适应患肢病情的变化,且具有较好的平滑性和稳定性。 Robot-aided rehabilitation system may be instable in the case when the patient's circumstances change,which make the rehabilitation training inefficient.The purpose of the study is to develop an adaptive impedance control strategy based on evolutionary fuzzy neural network.An on-line identification method was used to estimate impaired limb's mechanical impedance parameters which would be used as inputs of evolutionary fuzzy neural network impedance controller.By using evolutionary fuzzy neural network,desired impedance control parameters between rehabilitation robotic end-effector and upper-limb were regulated through on-line learning.The hybrid evolutionary algorithms were applied to offline optimize desired impedance control parameters,and then dynamic back-propagation (BP) algorithm was further used to adjust them on line.Analysis and simulation results indicate that the proposed algorithm is much more stable and smooth than traditional impedance control methods.
出处 《系统仿真学报》 CAS CSCD 北大核心 2010年第8期1880-1884,1889,共6页 Journal of System Simulation
基金 国家863计划资助项目(2006AA04Z246) 教育部重点项目(107053) 江苏省六大高峰人才资助项目(06-D-031)
关键词 康复机器人 进化算法 模糊神经网络 在线辨识 自适应阻抗控制 rehabilitation robot evolutionary algorithm fuzzy neural network on-line identification adaptive impedance control
  • 相关文献

参考文献14

  • 1S Lum, G Burgar. The MIME robotic system for upper-limb neuro-rehabilitation: results.from a clinical trial in subacute stroke [C]// Proceedings of the 9th International Conference on Rehabilitation Robotics, 2005, (1): 511- 514.
  • 2M S Ju, C C K Lin, D H Lin, et al. A rehabilitation robot with force-position hybrid fuzzy controller: hybrid fuzzy control of rehabilitation robot [J].IEEE Transactions on Neural Systems and Rehabilitation Engineering (S1534-4320), 2005, 13(3): 349-358.
  • 3J L Patton, F A Mussa-Ivaldi. Robot-assisted adaptive training: custom force fields for teaching movement patterns [J]. IEEE Transactions on Biomedical Engineering (S0018-9294), 2004, 51 (4): 636-646.
  • 4K Kiguchi, T Tanaka, T Fukuda. Neuro-fuzzy control of a robotic exoskeleton with EMG signals [J]. IEEE Transactions on Fuzzy Systems (S1063-6706), 2005, 12(4): 481-490.
  • 5H I Krebs, N Hogan, M L Aisen, et al. Robot-aided neurorehabilitation [J]. IEEE Transactions on Rehabilitation Engineering (S1063-6528), 1998, 6(1): 75-87.
  • 6R Richardson, M Brown, B Bhakta, et al. Design and control of a three degree of freedom pneumatic physiotherapy robot [J]. Robotica (S0263-5747), 2003, 21(6): 589-604.
  • 7T Tsuji, Y Tanaka. On-line learning of robot arm impedance using neural networks [J]. Robotics and Autonomous Systems (S0921- 8890), 2005, 52(4): 257-271.
  • 8Z Xu, G Fang. Fuzzy-Neural Impedance Control for Robots [J]. Lecture Notes in Control and Information Sciences (S0170-8643), 2004, 299:263-275.
  • 9T Noritsugu, T Tanaka. Application of rubber artificial muscle manipulator as arehabilitation robot [J]. IEEE/ASME Transactions on Mechatronics (S1083-4435), 1997, 2(4): 259-267.
  • 10CC Lin, MS Ju, CW Lin, et al. The pendulum test for evaluating spasticity of the elbow joint [J]. Archives of Physical Medicine and Rehabilitation (S0003-9993), 2003, 84(1): 69-74.

同被引文献25

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部