期刊文献+

铊同位素及环境示踪研究进展 被引量:4

Thallium Isotopes and Environmental Tracing
下载PDF
导出
摘要 近年来随着多道接收电感耦合等离子体质谱仪(MC-ICPMS)的广泛应用,铊(Tl)同位素成为当前非传统同位素地球化学研究热点之一。本文综述了Tl同位素的最新研究进展。Tl是自然界迄今为止发现的具有同位素自然分馏效应的最重的元素之一。自然界中Tl同位素分馏值ε205Tl(ε205Tl指样品与标准物质NIST SRM 997 Tl的205Tl/203Tl值的万分偏差)的变化为-6.8^+4.8,陨石中ε205Tl值为-18.8^+29.7。Tl同位素可用于示踪低温过程中的物质迁移、海洋沉积物沉积过程等,也可用于指示古气候的变化,以及佐证特定时期有机碳输出量。因此,Tl同位素可为深入了解局域海洋沉积环境的氧化还原条件、碳循环和海洋化学演化等提供新信息,将在地学与环境科学研究中得到广泛应用。 With the advent of multiple-collector inductively coupled plasma mass spectrometry(MC-ICPMS) in recent years,the new unconventional Tl stable isotope geochemistry has been developed,and Tl isotope has become a new isotopic tracer in earth science.This paper reviews the recent progress of Tl stable isotope studies.Thallium is identified to be the heaviest element with natural isotope fractionation.The natural range of ε205Tl(ε205Tl represents the deviation of the 205Tl/203Tl ratio of a sample from the NIST SRM 997 Tl isotope standard in parts per 104) varies from-6.8 to +14.8 in earth materials,and from-18.8 to +29.7 in meteorites.Tl isotope can be used as a tracer to reveal material transport in low temperature process,depositional processes of marine materials,palaeoclimate changes,and changes of organic carbon output.Therefore,Tl isotope can be used as a powerful tool in understanding redox conditions of local depositional environment,biogeochemical cycling of carbon,and geochemical evolution of oceans.It is believed that,with further studies of the thallium isotope fractionation mechanism,thallium isotopes will be applied widely in earth and environmental sciences.
出处 《矿物岩石地球化学通报》 CAS CSCD 北大核心 2010年第3期311-316,共6页 Bulletin of Mineralogy, Petrology and Geochemistry
基金 973前期研究专项(2009CB426307) 国家科技支撑计划项目(2006BACO9B04) 贵州省国际科技合作重点项目(黔科合外G字2008700124号)
关键词 铊同位素 多道接收电感耦合等离子体质谱仪 分馏机制 环境示踪 Tl isotopes MC-ICPMS fractionation mechanism tracer
  • 相关文献

参考文献34

  • 1Shaw D M.The geochemistry of thallium[J].Geochim.Cosmochim.Acta,1952,2(2):118-154.
  • 2Taylor S R,McLennan S M.The continental crust; its composition and evolution; an examination of the geochemical record preserved in sedimentary rocks[M].Oxford:Blackwell Scientific Publishing,1985.
  • 3Johnson C M,Beard B L,Roden E E,Newman D K,Nealson K H.Isotopic constraints on biogeochemical cycling of Fe[J].Reviews in Mineralogy and Geochemistry,2004,55:359-408.
  • 4Rehk(a)mper M,Halliday A N.The precise measurement of T1 isotopic compositions by MC-ICPMS:Application to the analysis of geological materials and meteorites[J].Geochimica et Cosmochimica Acta,1999,63(6):935-944.
  • 5Dunstan L P,Gramlich J W,Barnes I L,Purdy W C.Absolute isotopic abundance and the atomic weight of a reference sample of thallium[J].Journal of Research of the National Bureau of Standards,1980,85:1-10.
  • 6Arden J W.Distribution of lead and thallium in the matrix of the Allende meteorite and the extent of terrestrial lead contamination in chondrites[J].Earth Planet.Sci.Lett.,1983,62:395-406.
  • 7Arden J W.Electrochemical separation and isotopic determination of thallium at the nanogram level by surface ionisation mass spectrometry[J].Analytica Chimica Acta,1983,148:211-223.
  • 8Nielsen S G,Rehk(a)mper M,Baker J,Halliday A N.The precise and accurate determination of thallium isotope compositions and concentrations for water samples by MC-ICPMS[J].Chemical Geology,2004,204(1-2):109-124.
  • 9Dixon P R,Perrin R E,Rokop D J,Maeck R,Janecky D R,Banar J P.Measurement of iron isotopes (Fe-54,Fe-56,Fe-57,and Fe-58) in submicrogram quantities of iron[J].Analytical Chemistry,1993,65 (15):2125-2130.
  • 10Marechal C N,Telouk P,Albarede F.Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry[J].Chemical Geology,1999,156(1-4):251-273.

同被引文献184

  • 1闫颖,张晓文,郭波莉.铅-镉-锌-汞稳定同位素在重金属污染源解析中的研究进展[J].环境化学,2020(10):2712-2721. 被引量:11
  • 2吴颖娟,陈永亨,吴惠明,曹小安,张诠,张红英.矿物废渣中铊的相态比较[J].环境科学与技术,2004,27(4):29-30. 被引量:2
  • 3杨春霞,陈永亨,彭平安,李超,常向阳,谢长生.土壤中重金属铊的分级提取形态分析法研究[J].分析测试学报,2005,24(2):1-6. 被引量:23
  • 4能昭春.泡塑对分散金属的吸附及其分析应用[J].地质实验室,1990,6(5):277-280. 被引量:7
  • 5Zitko V. Toxicity and pollution potential of thallium[J]. Science of the Total Environment, 1975, 4(2) :185-192.
  • 6Kwan K H M, Smith S. Some aspects of the kinetics of cadmium and thallium uptake by fronds of Lemna-Minor-L[ J]. New Phytologist, 1991, 117(1) :91-102.
  • 7Bargmann U, Cheam V, Norwood W P, et al. Toxicity and bioaccumulation of thallium in Hyalella azteca, with comparison to other metals and prediction of environmental impact[ J]. Environmental Pollution, 1998, 99( 1 ) :105-114.
  • 8Ralph L, Twiss M R. Comparative toxicity of thallium( I), thallium( III ), and cadmium( II ) to the unicellular alga chlarella isolated from Lake Erie [ J ]. Bulletin of Environmental Contamination and Toxicology, 2002, 68 (2) :261-268.
  • 9Templeton D M, Ariese F, Comelis R, et al. Guidelines for terms related to chemical speciation and fractionation of elements, definitions, structural aspects, and methodological approaches ( IUPAC Recommendations 2000) [ J]. Pure and Applied Chemistry, 2000, 72 ( 8 ) : 1453-1470.
  • 10Flegal A R, Patterson C C. Thallium concentrations in seawater[ J]. Marine Chemistry, 1985, 15 (4) :327-331.

引证文献4

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部