期刊文献+

基于半监督流形学习的无线传感器网络定位方法及其应用

Localization algorithm based on semi-supervised manifold learning in wireless sensor networks and its application
原文传递
导出
摘要 提出了一种基于流形半监督学习的移动节点定位算法.该算法利用基于流形学习的半监督方法,通过一定量的有标签样本和无标签样本,获取隐含在节点接收信号强度信息中的流形结构,直接建立节点物理位置与接收信号强度之间的映射关系.算法不需要使用现有的理论或经验信号传播模型,避免了模型不准确带来的定位误差,而且允许网络中存在大量无标签样本,降低了数据采集难度,提高了算法实用性.冶金工业现场的实际应用结果表明,相对RADAR算法,本文算法具有较高的定位精度. A localization algorithm based on semi-supervised manifold learning is proposed. Manifold structures hidden in the information of received signal strength can be obtained by the algorithm. It is used to compute a subspace mapping function between the signal space and the physical space by using a small amount of labeled samples and a large amount of unlabeled samples. Existing theories and experiential signal propagation models need not to be known in the algorithm,and localization errors generated by inaccurate models can be avoided. A number of unlabeled samples were used to decrease the difficulty of collecting data and increase the practicality of the algorithm. Real nodes were used to setup the network in metallurgical industry environments. Experimental results in metallurgical enterprises show that a higher accuracy with much less calibration effort is achieved in comparison with RADAR localization systems.
出处 《北京科技大学学报》 EI CAS CSCD 北大核心 2010年第7期946-951,共6页 Journal of University of Science and Technology Beijing
基金 教育部科学技术研究重点项目资助(No.107115) 国家自然科学基金资助项目(No.50674010) 国家高技术研究发展计划资助项目(No.2007AA04Z169)
关键词 无线传感器网络 定位 半监督 流形学习 wireless sensor networks localization semi-supervised manifold learning
  • 相关文献

参考文献10

  • 1Mao G, Fidan B, Anderson B. Wireless sensor network localization techniques. Comput Networks, 2007,51 (10) : 2529.
  • 2王福豹,史龙,任丰原.无线传感器网络中的自身定位系统和算法[J].软件学报,2005,16(5):857-868. 被引量:672
  • 3Bachrach J, Taylor C. Localization in Sensor Networks in Handbook of Sensor Networks : Algorithms and Architectures. Wiley, 2005.
  • 4Sayed A, Tarighat A, Khajehnouri N. Network-based wireless location: challenges faced in developing techniques for accurate wireless location information. IEEE Signal Process Mag, 2005, 22 (4) : 24.
  • 5Girod L, Bychovskiy V, Elson J. Locating tiny sensors in time and space: a case study//Proceedings of the Int'l Conference on Computer Design. Freiburg, 2002:214.
  • 6Girod L, Estrin D. Robust range estimation using acoustic and muhimodal sensing //Proceedings of the IEEE/RSJ Int'l Conference on Intelligent Robots and Systems. Maui, 9002:1312.
  • 7Priyantha N, Miu A, Balakrishnan H. The cricket compass for context-aware mobile applications///Proceedings of the 7 th Annual Int'l Conference on Mobile Computing and Networking. Rome, 2001,1.
  • 8杨剑,王珏,钟宁.流形上的Laplacian半监督回归[J].计算机研究与发展,2007,44(7):1121-1127. 被引量:15
  • 9Belkin M, Niyogi P, Sindhwani V. Manifold regularization: a geometric framework for learning from examples. J Mach Learn Res, 2006, 7:2399.
  • 10Bahl P, Padmanabhan V N. Radar: an in-building RF-based user location and tracking system/JProceedings of the 19th Annual Joint Conference of the IEEE Computer and Communications Societies. Israel, 2000:775.

二级参考文献70

  • 1杨剑,李伏欣,王珏.一种改进的局部切空间排列算法[J].软件学报,2005,16(9):1584-1590. 被引量:36
  • 2罗四维,赵连伟.基于谱图理论的流形学习算法[J].计算机研究与发展,2006,43(7):1173-1179. 被引量:76
  • 3Bulusu N. Self-Configuring localization systems [Ph.D. Thesis]. Los Angeles: University of California, 2002.
  • 4Welch G, Bishop G, Vicci L, Brumback S, Keller K, Colucci D. The HiBall tracker: High-Performance wide-area tracking for virtual and augmented environments. In: Proc. of the ACM Symp. on Virtual Reality Software and Technology. London: ACM Press, 1999. 1-11. http://www.cs.unc.edu/~welch/media/pdf/VRST99_HiBall.pdf
  • 5Sawides A, Han C-C, Srivastava MB. Dynamic fine-grained localization in ad-hoc networks of sensors. In: Proc. of the 7th Annual Int'l Conf. on Mobile Computing and Networking. Rome: ACM Press, 2001. 166-179. http://citeseer. ist.psu.edu/savvides01dynamic.html
  • 6Hazas M, Ward A. A novel broadband ultrasonic location system. In: Borriello G, Holmquist LE, eds. Proc. of the 4th Int'l Conf.on Ubiquitous Computing. Goteborg: Springer-Verlag, 2002. 264-280. http://www.viktoria.se/ubicomp/ap.html
  • 7Hazas M, Ward A. A high performance privacy-oriented location system. In: Titsworth F, ed. Proc. of the 1st IEEE Int'l Conf. on Pervasive Computing and Communications. Fort Worth: IEEE Computer Society, 2003. 216-233. http://www.comp.lancs.ac.uk/~hazas/Hazas03_AHighPerformancePrivacy-OrientedLS.pdf
  • 8Doherty L. Algorithms for position and data recovery in wireless sensor networks [MS. Thesis]. Berkeley: University of California,2000.
  • 9Avvides A, Park H, Srivastava MB. The bits and flops of the N-hop multilateration primitive for node localization problems. In:Proc. of the 1st ACM Int'l Workshop on Wireless Sensor Networks and Applications. Atlanta: ACM Press, 2002. 112-121.http://nesl.ee.ucla.edu/projects/ahlos/reports/tm20020307 AS.pdf
  • 10He T, Huang CD, Blum BM, Stankovic JA, Abdelzaher T. Range-Free localization schemes in large scale sensor networks. In: Proc.of the 9th Annual Int'l Conf. on Mobile Computing and Networking. San Diego: ACM Press, 2003.81-95. http://www.cs.virginia.edu/~th7c/paper/APIT_CS-2003 -06.pdf

共引文献685

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部