摘要
设F为域,Sn(F)为F上的对称矩阵空间,L:Sn(F)→S(n1)(F)(n≥n1)为保秩1算子,证明了L为如下形式之一:(A)L(X)=aPXPSn(F),n=n1(B)L()X=f(X)E(11)(n),Sn(F),n≥n1其中,F为一线性函数。
Suppose F is a field with F>3, L: S_n(F) →S_(n1)(F)(n≥n1) is a rank one preserver. The authors prove that L has one of the following forms: (A) L(X)=aPXP,XS_n(F), n = n1, (B) L(X)=f(X)E_(11)^(n),XS(F), n≥ n1, where F, peL.(F), and f : S.(F)→ F is a linear function.
出处
《黑龙江大学自然科学学报》
CAS
1999年第1期5-8,13,共5页
Journal of Natural Science of Heilongjiang University