摘要
考虑二阶时滞方程其中b,q,k,τ为常数,q0,τ>0。方程(*)是Minorsky[1]在研究船体摆动控制问题时提出的数学模型。给出了方程所有解振动的代数判据,即参数形式的充要条件,这些条件易于检验和应用。
Consider Scond-order delay equations x(t) + bx(t) + qx(t - ) + lcx(t)= 0 where b, q, k, are constants, is a mathematical model raised by Minorsky [1] in studying the control problem of ship body's swaying. The author establishes a necessary and suficient condition for oscillation of Eq.(*), which is easy to verify and apply .
出处
《黑龙江大学自然科学学报》
CAS
1999年第1期14-19,24,共7页
Journal of Natural Science of Heilongjiang University
关键词
时滞方程
特征方程
振动性
代数判据
解
Delay equations. Characteristic equations, Oscillation, Criterion.