摘要
设R是任一有单位元的环(不必是交换环),证明了Sn(R)及其混合换位子群是由平延坐成的,Ωi与Di(i=1,…,n-1)分别是民Gn(R)与Sn(R)的极大Abel正规子群。并证明了当环R的每个元素均是R中若干个单位元之和时,Ωi是由αI(αΩZ*)与平延T(ii+1)(1)生成。
Let R be any one of rings which has unit elemet (not necessarily the commutative rings). The author proves that Sn(R) and its mixed commutor groups are formed by flat extension, and are seperatcly the maximal Abel mormal divisor, is formed by and flat extension (1) when each element of ring R is the sum of a number of unit element in R.
出处
《黑龙江大学自然科学学报》
CAS
1999年第1期27-30,共4页
Journal of Natural Science of Heilongjiang University