摘要
什么样的子集可以作为一个序半群的正则同余的同余类仍是一个公开问题.Kehayopulu和Tsingelis给出了什么样的子集可以作为序半群的某个正则半格同余的同余类.继他们之后,本文证明了序半群S的半群结构上的理想C是S的正则同余类的充分必要条件为C是凸集.
What subsets of an ordered semigroup S can serve as a congruence class of certain regular
congruence on S is still an open problem to be solved. Kehayopulu and Tsingeles have given
out a characterization whose subsets of S are a congruence class of some regular semilattice
congruence on S . The aim of this paper is to prove that an ideal C of an ordered semigroup S
on its semigroup structure can serve as a class of some regular congruences on S if and only if
C is convex.
出处
《兰州大学学报(自然科学版)》
CAS
CSCD
北大核心
1999年第1期30-33,共4页
Journal of Lanzhou University(Natural Sciences)
基金
国家自然科学基金
广东省自然科学基金
关键词
序半群
理想
正则同余
同余类
ordered semigroup
ideal
regular congruence
congruence class