摘要
Lyapunov指数是定量描述混沌吸引子的重要指标,自从1985年Wolf提出Lya-punov指数的轨线算法[1]以来,如何准确、快速地计算实验数据的Lyapunov指数便成为一个判定运动性质的重要问题.本文基于作者给出的Lyapunov指数的具体算法,计算了三种动力系统的Lyapunov指数并与Wolf的算法进行了比较,计算结果表明:不同的Lyapunov指数对应不同的非线性混沌动力系统,且Lyapunov指数越大对应的混沌动力系统的几何结构就越复杂.
The Lyapunov exponent is an important quantitative index for describing chaotic attractors.Since Wolf put up the trajectory algorithm to the Lyapunov exponent in 1985,how to calculate the Lyapunov exponent for the non linear chaotic experimental data obtained in dynamic analysis accurately has become a very important question.Based on the theoretical algorithm of paper,this paper gives the matric algorithm of the Lyapunov exponent,and compares its results with the results of Wolfs algorithm.The calculated results validate that different Lyapunov exponents correspond to the different behavior of the non linear chaotic dynamic system,and Lyapunov exponents are bigger,and the structure of the chaotic behavior is more complex.
出处
《天津大学学报》
EI
CAS
CSCD
1999年第2期190-196,共7页
Journal of Tianjin University(Science and Technology)
基金
国家自然科学基金